Weakly interacting massive particles (WIMPs) have long reigned as one of the leading classes of dark matter candidates. The observed dark matter abundance can be naturally obtained by freezeout of weakscale dark matter annihilations in the early Universe. This "thermal WIMP" scenario makes direct predictions for the total annihilation cross section that can be tested in present-day experiments. While the dark matter mass constraint can be as high as m χ ≳ 100 GeV for particular annihilation channels, the constraint on the total cross section has not been determined. We construct the first model-independent limit on the WIMP total annihilation cross section, showing that allowed combinations of the annihilationchannel branching ratios considerably weaken the sensitivity. For thermal WIMPs with s-wave 2 → 2 annihilation to visible final states, we find the dark matter mass is only known to be m χ ≳ 20 GeV. This is the strongest largely model-independent lower limit on the mass of thermal-relic WIMPs; together with the upper limit on the mass from the unitarity bound (m χ ≲ 100 TeV), it defines what we call the "WIMP window." To probe the remaining mass range, we outline ways forward.
Statistical evidence has previously suggested that the galactic center GeV excess (GCE) originates largely from point sources, and not from annihilating dark matter. We examine the impact of unmodeled source populations on identifying the true origin of the GCE using non-Poissonian template fitting (NPTF) methods. In a proof-of-principle example with simulated data, we discover that unmodeled sources in the Fermi bubbles can lead to a dark matter signal being misattributed to point sources by the NPTF. We discover striking behavior consistent with a mismodeling effect in the real Fermi data, finding that large artificial injected dark matter signals are completely misattributed to point sources. Consequently, we conclude that dark matter may provide a dominant contribution to the GCE after all.
Dark matter capture and annihilation in the Sun can produce detectable high-energy neutrinos, providing a probe of the dark matter-proton scattering cross section. We consider the case when annihilation proceeds via long-lived dark mediators, which allows gamma rays to escape the Sun and reduces the attenuation of neutrinos. For gamma rays, there are exciting new opportunities, due to detailed measurements of GeV solar gamma rays with Fermi, and unprecedented sensitivities in the TeV range with HAWC and LHAASO. For neutrinos, the enhanced flux, particularly at higher energies (∼TeV), allows a more sensitive dark matter search with IceCube and KM3NeT. We show that these search channels can be extremely powerful, potentially improving sensitivity to the dark matter spin-dependent scattering cross section by several orders of magnitude relative to present searches for high-energy solar neutrinos, as well as direct detection experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.