Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability.
Growth of high quality, dense carbon nanotube (CNT) arrays via catalytic chemical vapor deposition (CCVD) has been largely limited to catalysts supported on amorphous alumina or silica. To overcome the challenge of conducting CNT growth from catalysts supported on conductive substrates, we explored a two-step surface modification that involves ion beam bombardment to create surface porosity and deposition of a thin AlxOy barrier layer to make the surface basic. To test the efficacy of our approach on a non-oxide support, we focus on modification of 316 stainless steel (SS), a well-known inactive substrate for CNT growth. Our study reveals that ion beam bombardment of SS has the ability to reduce film thickness of the AlxOy barrier layer required to grow CNTs from Fe catalysts to 5 nm, which is within the threshold for the substrate to remain conductive. Additionally, catalysts supported on ion beam-damaged SS with the same AlxOy thickness show improved particle formation, catalyst stability, and CNT growth efficiency, as well as producing CNTs with higher quality and density. Under optimal reaction conditions, this modification approach can lead to CNT growth on other nontraditional substrates and potentially benefit applications that require CNTs be grown on a conductive substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.