With the increase in the importance of using green energy sources to meet the world's energy demands, attempts have been made to push perovskite solar cell technology toward industrialization all around the world.
In this work a standoff Raman spectroscopy SRS system has been designed, assembled and tested for detecting explosives (Ammonium nitrate, Trinitrotoluene and Urea nitrate) in dark laboratory at 4 m target-telescope distance. The SRS system employs frequency doubled Nd:YAG laser at 532 nm excitation with laser power of 250 mW and integration time of 2 second. The Cassegrain telescope was coupled to the Ventana Raman spectrometer using a fiber optics cable, and Notch filter is used to reject Rayleigh scattering light. The Raman scattered light is collected by a telescope and then transferred via fiber optic to spectrometer and finally directed into charge coupled device CCD detector. In order to test SRS system, it has been used to detect the Raman spectra of Toxic Industrial Compounds TIC such as acetone, toluene, and carbon tetrachloride. The SRS results were compared with conventional Raman microscopy results using a bench top Bruker SENTERRA Raman instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.