Objectives. Light curing is crucial when applying composite resin restorations. Complete polymerization of the resin depends on delivering adequate light energy to it. Dental clinicians may be unaware of the importance of proper light-curing techniques. This study aimed at evaluating and comparing the level of knowledge of general practitioners (GPs) and specialists (SPs) regarding light-curing units. Materials and Methods. An electronic survey was conducted online among GPs and SPs of various specialties, working in the governmental sector in Riyadh, Saudi Arabia. Collected data were analyzed for statistical significance. Results. 310 dentists were included in the study. Nearly half of the GPs (45.9%) and more than half of SPs (56.8%) use light-emitting diode (LED) type light-curing units (LCUs). 36.9% of GPs and 29.6% of SPs were unsure about the type of LCUs they use in their dental clinics. 10.8% of GPs and 8.5% of SPs knew the proper term of the power output of LCU. 52.2% of the GPs and 55.7% of SPs were wrong about advancements in technology of LED LCUs. Regarding the use of radiometer, 48.2% of SPs and 35.1% of GPs had responded wrongly, and 37.7% of SPs and 52.3% of GPs were not familiar with the device, showing a statistical significance p = 0.040 . There was no statistical significance observed in the responses pertaining to their years of experience, expected for two questions. Conclusion. Both GPs and SPs displayed inadequate knowledge regarding the use of LCUs. Further educational programs are recommended to spread awareness about the handling of LCUs among dental clinicians.
How dentists cure a resin-based material has deleterious effects on the material’s properties and its interaction with surrounding dental tissues. Biofilm accumulation has been implicated in the pathogenesis of carious lesions around dental restorations, with its composition manifesting expressed dysbiosis in patients suffering from dental caries. To evaluate the influence of varying radiant exposure on the degree of conversion (DC%), Streptococcus mutans biofilm growth, and surface roughness of bulk-fill composites under different light-curing conditions. Two light-curing units (LCU) at 600 and 1000 mW/cm2 were used to simulate curing conditions with different angulations (∢20° and ∢35°) or 2 mm-distance displacements of the LCU tip. The radiant exposure (RE) was assessed, and the composites were analyzed for DC%. Biofilm formation was induced over the bulk-fill composites and analyzed via colony-forming units counting and scanning electron microscopy (SEM). The surface roughness was analyzed via a profilometer and SEM after biofilm formation. Curing conditions with different angulation or displacement decreased RE compared to the “optimal condition”. The moderately (∢35°) angulated LCU tip and low (600 mW/cm2) radiant emittance significantly reduced the DC% (p < 0.05). The difference in DC% between the top and bottom of the composites ranged from 8 to 11% for 600 mW/cm2 and 10 to 20% for 1000 mW/cm2. Greater S. mutans biofilm and surface changes were found in composites with non-optimal RE delivery (e.g., tip displacement and angulation) (p < 0.05). Inadequate polymerization of bulk-fill composites was associated with more biofilm accumulation and surface topography changes. Overall, non-optimally performed curing procedures reduced the amount of delivered RE, which led to low DC%, more biofilm formation, and higher surface roughness. The improper light-curing of bulk-fill composites compromises their physicochemical and biological properties, which could lead to inferior clinical performance and reduced restorative treatments’ longevity.
Objectives This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite ( p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE ( p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition ( p < 0.01). Conclusions The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.