Accurate and real-time traffic forecasting plays an important role in the Intelligent Traffic System and is of great significance for urban traffic planning, traffic management, and traffic control. However, traffic forecasting has always been considered an open scientific issue, owing to the constraints of urban road network topological structure and the law of dynamic change with time, namely, spatial dependence and temporal dependence. To capture the spatial and temporal dependence simultaneously, we propose a novel neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is in combination with the graph convolutional network (GCN) and gated recurrent unit (GRU). Specifically, the GCN is used to learn complex topological structures to capture spatial dependence and the gated recurrent unit is used to learn dynamic changes of traffic data to capture temporal dependence. Then, the T-GCN model is employed to traffic forecasting based on the urban road network. Experiments demonstrate that our T-GCN model can obtain the spatio-temporal correlation from traffic data and the predictions outperform state-of-art baselines on real-world traffic datasets. Our tensorflow implementation of the T-GCN is available at https://github.com/lehaifeng/T-GCN.
Change detection is a basic task of remote sensing image processing. The research objective is to identify the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise in deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudochange information. To overcome the lack of resistance in current methods to pseudochanges, in this article, we propose a new method, namely, dual attentive fully convolutional Siamese networks, for change detection in high-resolution images. Through the dual attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e., unchanged samples are much more abundant than changed samples, which is one of the main reasons for pseudochanges. We propose the weighted double-margin contrastive loss to address this problem by punishing attention to unchanged feature pairs and increasing attention to changed feature pairs. The experimental results of our method on the change detection dataset and the building change detection dataset demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.9% and 4.2%, respectively, in the F1 score. Our PyTorch implementation is available at https://github.com/lehaifeng/DASNet.
Remote sensing image classification is a fundamental task in remote sensing image processing. In recent years, deep convolutional neural network (DCNN) has seen a breakthrough progress in natural image recognition because of three points: universal approximation ability via DCNN, large-scale database (such as ImageNet), and supercomputing ability powered by GPU. The remote sensing field is still lacking a large-scale benchmark compared to ImageNet and Place2. In this paper, we propose a remote sensing image classification benchmark (RSI-CB) based on massive, scalable, and diverse crowdsource data.Using crowdsource data, such as Open Street Map (OSM) data, ground objects in remote sensing images can be annotated effectively by points of interest, vector data from OSM, or other crowdsource data. The annotated images can be used in remote sensing image classification tasks. Based on this method, we construct a worldwide large-scale benchmark for remote sensing image classification. This benchmark has two sub-datasets with 256 × 256 and 128 × 128 sizes because different DCNNs require different image sizes. The former contains 6 categories with 35 subclasses of more than 24,000 images. The latter contains 6 categories with 45 subclasses of more than 36,000 images. The six categories are agricultural land, construction land and facilities, transportation and facilities, water and water conservancy facilities, woodland, and other lands, and each has several subclasses. This classification system of ground objects is defined according to the national standard of land-use classification in China and is inspired by the hierarchy mechanism of ImageNet. Finally, we conduct many experiments to compare RSI-CB 1 with the SAT-4, SAT-6, and UC-Merced datasets on handcrafted features, such as scale-invariant feature transform, color histogram, local binary patterns, and GIST, and classical DCNN models, such as AlexNet, VGGNet, GoogLeNet, andResNet. In addition, we show that DCNN models trained by RSI-CB have good performance when transferred to another dataset, that is, UC-Merced, and good generalization ability.Experiments show that RSI-CB is more suitable as a benchmark for the remote sensing image classification task than other benchmarks in the big data era and has potential applications.
Accurate real-time traffic forecasting is a core technological problem against the implementation of the intelligent transportation system. However, it remains challenging considering the complex spatial and temporal dependencies among traffic flows. In the spatial dimension, due to the connectivity of the road network, the traffic flows between linked roads are closely related. In the temporal dimension, although there exists a tendency among adjacent time points, the importance of distant time points is not necessarily less than that of recent ones, since traffic flows are also affected by external factors. In this study, an attention temporal graph convolutional network (A3T-GCN) was proposed to simultaneously capture global temporal dynamics and spatial correlations in traffic flows. The A3T-GCN model learns the short-term trend by using the gated recurrent units and learns the spatial dependence based on the topology of the road network through the graph convolutional network. Moreover, the attention mechanism was introduced to adjust the importance of different time points and assemble global temporal information to improve prediction accuracy. Experimental results in real-world datasets demonstrate the effectiveness and robustness of the proposed A3T-GCN. We observe the improvements in RMSE of 2.51–46.15% and 2.45–49.32% over baselines for the SZ-taxi and Los-loop, respectively. Meanwhile, the Accuracies are 0.95–89.91% and 0.26–10.37% higher than the baselines for the SZ-taxi and Los-loop, respectively.
Different Earth observation resources (EORs) [e.g., satellites, airships, and unmanned aerial vehicles (UAVs)] are usually managed by different organization sub-planners, which lack interactions and cooperation among one another. Such independent resource operations are no longer efficient to meet diverse and vast observation requests, especially in emergency situations, such as earthquakes, flooding, and forest fire disasters. This paper addresses the issue of coordinated planning of heterogeneous EORs, including satellites, airships, and UAVs. A hierarchical coordinated planning architecture is proposed to integrate heterogeneous EORs for the construction of a distributed and loosely coupled Earth observation system. The architecture comprises four component categories, namely, observation resource, sub-planner, coordination, and information management. Moreover, we propose two task assignment algorithms to coordinate and allocate observation tasks to sub-planners. The first algorithm is a highest-weight-first-allocated algorithm, and the second is a tabu-list-based simulated annealing (SA-TL) algorithm. Experiments and comparative studies demonstrate the efficiency of the coordinated planning architecture and SA-TL algorithm. We also show that the system responds dynamically to unexpected situations through effective disturbance-handling mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.