Recent research has shown that hyperelastic properties of the plantar soft tissue consisting of adipose tissue and fibrous septa change from region to region. However, relatively little research has been conducted to develop analytical or computational models to describe the region-specific behavior of the plantar soft tissue. The objective of the research is to develop a region-specific constitutive model of the plantar soft tissue. Plantar soft tissue specimens were dissected from six regions [subcalcaneal (CA), sublateral (LA), subnavicular (Nav), 1st, 3rd, and 5th submetatarsal (M1, M3, M5)] from cadaveric foot samples, and a picrosirius red staining technique was used to visualize the collagen fibers in fibrous septa. The volume fractions of adipose tissue and fibrous septa and the volume fractions of the principal orientations of the fibrous septa were calculated with the intensity gradient method. Region-specific constitutive models were then developed in finite element analysis considering the microstructure of the plantar soft tissue. The hyperelastic region specific material properties of the plantar soft tissue were validated with experimental unconfined compression tests and indentation tests from the literature. The results show that the models give reasonable predictions of the stiffness of the soft tissue within a standard deviation of the tests. The region-specific constitutive models help to explain how changes in the constituents are related to mechanical behavior of the soft tissue on a region specific basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.