The market for biogenic and synthetic alternatives to leather is increasing aiming to replace animal-based materials with vegan alternatives. In parallel, bio-based raw materials should be used instead of fossil-based synthetic raw materials. In this study, a shoe upper leather and an artificial leather, and nine alternative materials (Desserto®, Kombucha, Pinatex®, Noani®, Appleskin®, Vegea®, SnapPap®, Teak Leaf®, and Muskin®) were investigated. We aimed to compare the structure and technical performance of the materials, which allows an estimation of possible application areas. Structure and composition were characterized by microscopy and FTIR spectroscopy, the surface properties, mechanical performance, water vapor permeability, and water absorption by standardized physical tests. None of the leather alternatives showed the universal performance of leather. Nevertheless, some materials achieved high values in selected properties. It is speculated that the grown multilayer structure of leather with a very tight surface and a gradient of the structural density over the cross-section causes this universal performance. To date, this structure could neither be achieved with synthetic nor with bio-based materials.
Simulation-based prediction of mechanical properties is highly desirable for optimal choice and treatment of leather. Nowadays, this is state-of-the-art for many man-made materials. For the natural material leather, this task is however much more demanding due to the leather’s high variability and its extremely intricate structure. Here, essential geometric features of the leather’s meso-scale are derived from 3D images obtained by micro-computed tomography and subsumed in a parameterizable structural model. That is, the fiber-bundle structure is modeled. The structure model is combined with bundle properties derived from tensile tests. Then the effective leather visco-elastic properties are simulated numerically in the finite element representation of the bundle structure model with sliding contacts between bundles. The simulation results are validated experimentally for two animal types, several tanning procedures, and varying sample positions within the hide. Finally, a complete workflow for assessing leather quality by multi-scale simulation of elastic and visco-elastic properties is established and validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.