Thin-film oxide heterostructures show great potential for use in spintronic memories, where electronic charge and spin are coupled to transport information. Here we use a La 0.7 Sr 0.3 MnO 3 (LSMO)/PbZr 0.2 Ti 0.8 O 3 (PZT) model system to explore how local variations in electronic and magnetic phases mediate this coupling. We present direct, local measurements of valence, ferroelectric polarization and magnetization, from which we map the phases at the LSMO/PZT interface. We combine these experimental results with electronic structure calculations to elucidate the microscopic interactions governing the interfacial response of this system. We observe a magnetic asymmetry at the LSMO/PZT interface that depends on the local PZT polarization and gives rise to gradients in local magnetic moments; this is associated with a metal-insulator transition at the interface, which results in significantly different charge-transfer screening lengths. This study establishes a framework to understand the fundamental asymmetries of magnetoelectric coupling in oxide heterostructures.
The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing nonmonotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/ non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer.
Exponential growth of layer-by-layer (LbL) assembled films is desirable because this method considerably increases the growth rate, resulting in much thicker films in a shorter period of time than is the case with normally linearly grown LbL thin films. For the first time, we demonstrate the exponential LbL (e-LbL) growth of poly(ethyleneimine)/SiO2 nanoparticles (PEI/SiO2) bicomponent thin films that consist mostly of SiO2 nanoparticles (over 90 wt % obtained by thermogravimetric analysis). These results are in contrast to earlier e-LbL studies, where the film thickness was made up mostly of the polyelectrolyte, with a very small percentage coming from the inorganic nanoparticles. Here, we show that the LbL growth of the PEI/SiO2 system significantly depends on the pH of the PEI and the SiO2 solutions. The e-LbL growth will only occur when the film is deposited with PEI at a high pH and SiO2 at a low pH. The exponential growth was characterized using a quartz crystal microbalance, atomic force microscopy and scanning electron microscopy imaging, and neutron reflectometry. It is demonstrated that e-LbL films can grow to thicknesses as large as 2–3 μm within just 10 bilayers. The findings reported in this article emphasize new opportunities for the e-LbL growth of organic/inorganic bicomponent composite thin films that may have applications as electrically conducting films, hydrophobic films, and brick-and-mortar biomimetic films.
We report measurements on yttrium iron garnet (YIG) thin films grown on both gadolinium gallium garnet (GGG) and yttrium aluminium garnet (YAG) substrates, with and without thin Pt top layers. We provide three principal results: the observation of an interfacial region at the Pt/YIG interface, we place a limit on the induced magnetism of the Pt layer and confirm the existence of an interfacial layer at the GGG/YIG interface. Polarised neutron reflectometry (PNR) was used to give depth dependence of both the structure and magnetism of these structures. We find that a thin film of YIG on GGG is best described by three distinct layers: an interfacial layer near the GGG, around 5 nm thick and non-magnetic, a magnetic 'bulk' phase, and a non-magnetic and compositionally distinct thin layer near the surface. We theorise that the bottom layer, which is independent of the film thickness, is caused by Gd diffusion. The top layer is likely to be extremely important in inverse spin Hall effect measurements, and is most likely Y 2 O 3 or very similar. Magnetic sensitivity in the PNR to any induced moment in the Pt is increased by the existence of the Y 2 O 3 layer; any moment is found to be less than 0.02 uB/atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.