Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria.
To our knowledge, these results show for the first time the role of lactic acid in facilitating neovascularization through macrophage-induced angiogenesis. We suggest that targeting macrophage metabolism can be a promising strategy for CNV treatment.
Mycobacterium massiliense (M. mass), belonging to the M. abscessus complex, is a rapidly growing mycobacterium that is known to cause tuberculous-like lesions in humans. To better understand the interaction between host cells and M. mass, we used a recently developed in vitro model of early granuloma-like cell aggregates composed of human peripheral blood mononuclear cells (PBMCs). PBMCs formed granuloma-like, small and rounded cell aggregates when infected by live M. mass. Microscopic examination showed monocytes and macrophages surrounded by lymphocytes, which resembled cell aggregation induced by M. tuberculosis (M. tb). M. mass-infected PBMCs exhibited higher expression levels of HLA-DR, CD86 and CD80 on macrophages, and a significant decrease in the populations of CD4+ and CD8+ T cells. Interestingly, low doses of M. mass were sufficient to infect PBMCs, while active host cell death was gradually induced with highly increased bacterial loads, reflecting host destruction and dissemination of virulent rapid-growing mycobacteria (RGM). Collectively, this in vitro model of M. mass infection improves our understanding of the interplay of host immune cells with mycobacteria, and may be useful for developing therapeutics to control bacterial pathogenesis.
Background/Aims: Angiotensin II in the failing heart initially helps to maintain cardiac output and blood pressure, but ultimately accelerates its deterioration. In this study, we established a model of arrhythmia-induced heart failure (HF) in zebrafish and investigated the role of renin-angiotensin-aldosterone system (RAAS) modulation by using an angiotensin II type 1 receptor blocker, fimasartan, through the assessment of cellular and physiologic responses, morbidity, and mortality. Methods: HF was induced in zebrafish larvae by exposure to 20 μM terfenadine.Morphologic, physiologic, and functional parameters were assessed in the presence or absence of fimasartan treatment. Results: Zebrafish exposed to terfenadine showed marked dilatation of the ventricle and reduced systolic function. Treatment with terfenadine was associated with 10-fold higher expression of atrial natriuretic peptide (p < 0.001 vs. vehicle), increased p53 mRNA expression, and chromatin fragmentation in the TUNEL assay, all of which were significantly reduced by fimasartan treatment. Moreover, fimasartan improved fractional shortening (terfenadine + fimasartan 16.9% ± 3.1% vs. terfenadine + vehicle 11.4% ± 5.6%, p < 0.05) and blood flow (terfenadine + fimasartan 479.1 ± 124.1 nL/sec vs. terfenadine + vehicle 273.0 ± 109.0 nL/sec, p < 0.05). Finally, treatment with fimasartan remarkably reduced mortality (terfenadine + fimasartan 36.0% vs. terfenadine + vehicle 96.0%, p < 0.001). Conclusions: Fimasartan effectively protected against the progression of HF in zebrafish by improving hemodynamic indices, which improved survival. A reduction in apoptotic cell death and an improvement in hemodynamics may be the mechanisms behind these effects. Further human studies are warranted to evaluate the possible role of fimasartan in the treatment of HF.
Highlights d The tumor microenvironment increases the activity of PKA-C in macrophages d PKA-Cb specifies pro-tumoral phenotype of macrophages d Macrophages produce pro-tumoral VEGFA, IL-10, and ARG1 via PKA activity d Therapeutic targeting of PKA-C confers anti-tumor T cell responses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.