Eclipsing binary millisecond pulsars (the so-called black widows and redbacks) can provide important information about accretion history, pulsar irradiation of their companion stars and the evolutionary link between accreting X-ray pulsars and isolated millisecond pulsars. However, the formation of such systems is not well understood, nor the difference in progenitor evolution between the two populations of black widows and redbacks. Whereas both populations have orbital periods between 0.1 − 1.0 days their companion masses differ by an order of magnitude. In this paper, we investigate the formation of these systems via evolution of converging low-mass X-ray binaries by employing the MESA stellar evolution code. Our results confirm that one can explain the formation of most of these eclipsing binary millisecond pulsars using this scenario. More notably, we find that the determining factor for producing either black widows or redbacks is the efficiency of the irradiation process, such that the redbacks absorb a larger fraction of the emitted spin-down energy of the radio pulsar (resulting in more efficient mass loss via evaporation) compared to that of the black widow systems. We argue that geometric effects (beaming) is responsible for the strong bimodality of these two populations. Finally, we conclude that redback systems do not evolve into black widow systems with time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.