Donor–acceptor copolymers featuring electron-deficient isoindigo units and electron-rich 3,4-ethylenedioxy (EDOT) groups are presented as new materials for accumulation mode organic electrochemical transistors (OECTs). Grafting hybrid alkyl–ethylene glycol side chains on the isoindigo units of the copolymer leads to OECTs with outstanding substrate adhesion and operational stability in contact with an aqueous electrolyte, as demonstrated by their preserved performance after extensive ultrasonication (1.5 h) or after continuous on–off switching for over 6 h. Hybrid side chains outperform copolymers with alkyl only or ethylene glycol only side chains, which retain only 27% and 10% of the on currents after 40 min of on–off switching, respectively, under the same biasing conditions. These devices are promising candidates for in vitro and in vivo bioelectronics, applications where stability as well as robust adhesion of the conjugated polymer to the substrate are essential.
As new and better materials are implemented for organic electrochemical transistors (OECTs), it becomes increasingly important to adopt more economic and environmentally friendly synthesis pathways with respect to conventional transition-metal-catalyzed polymerizations. Herein, a series of novel n-type donoracceptor-conjugated polymers based on glycolated lactone and bis-isatin units are reported. All the polymers are synthesized via green and metal-free aldol polymerization. The strong electron-deficient lactone-building blocks provide low-lying lowest unoccupied molecular orbital (LUMO) and the rigid backbone needed for efficient electron mobility up to 0.07 cm 2 V −1 s −1 . Instead, polar atoms in the backbone and ethylene glycol side chains contribute to the ionic conductivity. The resulting OECTs exhibit a normalized maximum transconductance g m,norm of 0.8 S cm −1 and a μC* of 6.7 F cm −1 V −1 s −1 . Data on the microstructure show that such device performance originates from a unique porous morphology together with a highly disordered amorphous microstructure, leading to efficient ion-to-electron coupling. Overall, the design strategy provides an inexpensive and metal-free polymerization route for high-performing n-type OECTs.
Precise control of the microstructure in organic semiconductors (OSCs) is essential for developing high‐performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid‐rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high‐resolution scanning tunneling microscopy (STM). The rigid structure of the polymers allows the formation of thin films with uniaxially aligned polymer chains by using a simple one‐step solution‐shear/bar coating technique. These aligned films show a high optical anisotropy with a dichroic ratio of up to a factor of 6. Transport measurements performed using top‐gate bottom‐contact field‐effect transistors exhibit a high saturation electron mobility of 0.2 cm2 V−1 s−1 along the alignment direction, which is more than six times higher than the value reported in the previous work. This work demonstrates that this new class of polymers is able to achieve mobility values comparable to state‐of‐the‐art n‐type polymers and identifies an effective processing strategy for this class of rigid‐rod polymer system to optimize their charge transport properties.
Two D–A type polymers based on the gTDPP as the acceptor and gTVT and gTBTT as the donor have been developed. The donor unit affects the backbone curvature and the aggregation properties of the mixed conductors, regulating their performance in OECTs.
Conspectus Because of their low-temperature processing properties and inherent mechanical flexibility, semiconducting materials are promising candidates for enabling flexible displays, renewable energy, biological sensors, and healthcare. Progress has been made in materials performance by developing judicious materials design strategies. For example, improvements in electron transport have required new electron-deficient aromatics. Among them, isoindigo (IID) is an important functional group utilized in conjugated aromatics, where the structure combines two sets of five-membered electron-withdrawing lactam rings, exhibiting enhanced solubility, excellent chemical and thermal stabilities, broad absorption, and intriguing electron affinity. In the past decade, researchers have mainly focused on IID-based materials. However, the effect of heteroatom modification of the IID core has rarely been systemically investigated. In conventional conjugated polymers, single bonds connect the monomers, leading to energetic disorder and torsion defects, while ladder-type polymers are often intractable because of their fused nature. In this regard, the molecular design of new π scaffolds based on IID is central to the development of high-performance semiconductor polymers. Especially, a complete refresh of molecular design strategies and novel conjugated polymers with unique structures are needed to circumvent the disadvantages of the conventional ladder-type polymers. In this Account, we systematically summarize our recent progress in the design, synthesis, and structure–property relationships of IID- and particularly hetero-IID-based functional materials. More specifically, starting with molecular engineering of hetero-IIDs with variable electronic effects, conjugation lengths, and numbers of heterorings, we discuss the effect of the heteroring on the absorption spectra and energy levels. Additionally, we investigate a series of electron-withdrawing substitution of IIDs and hetero-IIDs and their molecular self-assembly behavior and the device performance. Furthermore, we discuss a series of IID–bis(EDOT) copolymers with hydrophilic ethylene glycol side chains for accumulation-mode organic thin-film electrochemical transistors, in which the relationships among the molecular structure, operational stability, film morphology, and device performance were revealed. Compared with IID polymers, the HOMO levels and optical band gaps of the thiophene and thienothiophene IID copolymers markedly decrease, and these polymers exhibit ambipolar charge transport. When we further expanded the IID core to a thieno[3,2-b][1]benzothiophene isoindigo (TBTI) core, such as in TBTIT, bulk-heterojunction solar cells employing this polymer class as the electron donor achieved good efficiency for additive- and annealing-free device conditions. When we introduced electron-deficient pyridine on the IID core, both the LUMO and HOMO energy levels of the copolymers markedly decreased, which significantly improved the electron mobility. In addition, we co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.