Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs) and accumulation of the extracellular matrix. There are limitations in the current therapies for liver fibrosis. Recently, oridonin was shown to induce apoptosis in HSCs. Thus, we aimed to determine the roles of oridonin in chronic liver injury and fibrosis. Liver fibrosis was induced by CCl 4 in mice injected intraperitoneally with oridonin for 6 weeks. The administration of oridonin significantly attenuated liver injury and reduced ALT levels. In addition, Sirius Red staining and the expression of α-smooth muscle actin (α-SMA) were significantly reduced by oridonin in murine livers with fibrosis. The expression of NLRP3, caspase-1, and IL-1β was downregulated with the oridonin treatment. Furthermore, the expression of F4/80 in liver tissues was also decreased by oridonin treatment. These results demonstrate that oridonin ameliorates chronic liver injury and fibrosis. Mechanically, oridonin may inhibit the activity of the NLRP3 inflammasome and inflammation in the liver. These results highlight the potential of oridonin as a therapeutic agent for liver fibrosis. K E Y W O R D Scollagen deposition, HSCs activation, liver fibrosis, NLRP3, oridonin
Traditionally, the bark of Uncaria rhynchophylla (UR) has been employed for the treatment of hypertension, cancer, convulsions, haemorrhage, autoimmune disorders and other ailments. The primary aim of the present study was to explore the antiproliferative activity of hirsuteine (HTE) isolated from UR over a range of concentrations in human NSCLC NCI-H1299 cells and to explore the mechanisms underlying its therapeutic efficacy. The effects of HTE on cell viability were examined using Cell Counting Kit-8 (CCK-8) and colony formation assays, while apoptosis was assessed by flow cytometry. Cell cycle progression was additionally evaluated via propidium iodide staining, while reverse transcription-quantitative PCR and western blotting methods were employed to assess the protein levels and genes related to apoptosis and progression of the cell cycle, respectively. NCI-H1299 cell proliferation was markedly suppressed by HTE in a time- and dose-dependent manner. However, clear changes in cell morphology were also induced, resulting in G0-G1 phase cell cycle arrest, which was associated with cyclin E and CDK2 downregulation. HTE additionally induced robust NSCLC NCI-H1299 cell apoptosis, downregulation of Bcl-2 and upregulation of cytoplasmic cytochrome C, Bax, Apaf1, cleaved caspase-3 and cleaved caspase-9, which together drove the observed apoptotic cell death. HTE could effectively suppress human NSCLC NCI-H1299 cell growth by inducing apoptotic death in a dose-dependent fashion in vitro , therefore elucidating the mechanism by which this phytomedicine acts as a potent anticancer compound that warrants study as a treatment for human NSCLC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.