Identifying drug–target interaction (DTI) is the basis for drug development. However, the method of using biochemical experiments to discover drug-target interactions has low coverage and high costs. Many computational methods have been developed to predict potential drug-target interactions based on known drug-target interactions, but the accuracy of these methods still needs to be improved. In this article, a graph autoencoder approach for DTI prediction (GADTI) was proposed to discover potential interactions between drugs and targets using a heterogeneous network, which integrates diverse drug-related and target-related datasets. Its encoder consists of two components: a graph convolutional network (GCN) and a random walk with restart (RWR). And the decoder is DistMult, a matrix factorization model, using embedding vectors from encoder to discover potential DTIs. The combination of GCN and RWR can provide nodes with more information through a larger neighborhood, and it can also avoid over-smoothing and computational complexity caused by multi-layer message passing. Based on the 10-fold cross-validation, we conduct three experiments in different scenarios. The results show that GADTI is superior to the baseline methods in both the area under the receiver operator characteristic curve and the area under the precision–recall curve. In addition, based on the latest Drugbank dataset (V5.1.8), the case study shows that 54.8% of new approved DTIs are predicted by GADTI.
Drug-Drug interaction (DDI) prediction is essential in pharmaceutical research and clinical application. Existing computational methods mainly extract data from multiple resources and treat it as binary classification. However, this cannot unambiguously tell the boundary between positive and negative samples owing to the incompleteness and uncertainty of derived data. A granular computing method called three-way decision is proved to be effective in making uncertain decision, but it relies on supplementary information to make delay decision. Recently, biomedical knowledge graph has been regarded as an important source to obtain abundant supplementary information about drugs. This paper proposes a three-way decision-based method called 3WDDI, in combination with knowledge graph embedding as supplementary features to enhance DDI prediction. The drug pairs are divided into positive, negative and boundary regions by Convolutional Neural Network (CNN) according to drug chemical structure feature. Further, delay decision is made for objects in the boundary region by integrating knowledge graph embedding feature to promote the accuracy of decision-making. The empirical results show that 3WDDI yields up to 0.8922, 0.9614, 0.9582, 0.8930 for Accuracy, AUPR, AUC and F1-score, respectively, and outperforms several baseline models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.