Periodic microscale array structures play an important role in diverse applications involving photonic crystals and diffraction gratings. A polarized holographic lithography system is proposed for patterning high-uniformity microscale two-dimensional crossed-grating structures with periodic tunability. Orthogonal two-axis Lloyd’s mirror interference and polarization modulation produce three sub-beams, enabling the formation of two-dimensional crossed-grating patterns with wavelength-comparable periods by a single exposure. The two-dimensional-pattern period can also be flexibly tuned by adjusting the interferometer spatial positioning. Polarization states of three sub-beams, defining the uniformity of the interference fringes, are modulated at their initial-polarization states based on a strict full polarization tracing model in a three-dimensional space. A polarization modulation model is established considering two conditions of eliminating the unexpected interference and providing the desired identical interference intensities. The proposed system is a promising approach for fabricating high-uniformity two-dimensional crossed gratings with a relatively large grating period range of 500–1500 nm. Moreover, our rapid and stable approach for patterning period-tunable two-dimensional-array microstructures with high uniformity could be applicable to other multibeam interference lithography techniques.
We present a method for the fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder using a dual-beam interference lithography (IL) system with a compact diode laser source. We employ a multiple-exposure stitching method to form an arrayed scale grating. This allows a scale grating with small line spacing to be achieved over a large width. This stitched scale grating integrates well with a newly developed two-probe optical encoder, allowing the measurement results to be numerically connected. Since neither the gap width nor the grating phase of the two adjacent gratings must be controlled, the fabrication process is both simplified and made more robust. This flexible and cost-effective fabrication technique can benefit many precision measurement applications. Experiments are carried out to demonstrate the feasibility of this technology.
In this paper, an orthogonal type two-axis Lloyd’s mirror interference lithography technique was employed to fabricate two-dimensional planar scale gratings for surface encoder application. The two-axis Lloyd’s mirror interferometer is composed of a substrate and two reflective mirrors (X- and Y-mirrors), which are placed edge by edge perpendicularly. An expanded and collimated beam was divided into three beams by this interferometer, a direct beam and two reflected beams, projected onto the substrate, X- and Y-mirrors, respectively. The unexpected beam sections having twice reflected off the mirrors were blocked by a filter. The remaining two reflected beams interfered with the direct beam on the substrate, generating perpendicularly cross patterns thus forming two-dimensional scale gratings. However, the two reflected beams undesirably interfere with each other and generate a grating pattern along 45-degree direction against the two orthogonal direction, which influence the pattern uniformity. Though an undesired grating pattern can be eliminated by polarization modulation with introduction of waveplates, spatial configuration of waveplates inevitably downsized the eventual grating, which is a key parameter for grating interferometry application. For solving this problem, theoretical and experimental study was carefully carried out to evaluate the fabrication quality with and without polarization modulation. Two-dimensional scale gratings with a 1 μm period in X- and Y-directions were achieved by using the constructed experiment system with a 442 nm He-Cd laser source. Atomic force microscopy (AFM) images and the result of diffraction performances demonstrated that the orthogonal type two-axis Lloyd’s mirror interferometer can stand a small order undesired interference, that is, a degree of orthogonality between two reflected beams, denoted by γ, no larger than a nominal value of 0.1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.