Due to the increasingly complex objects and massive information involved in spatial statistics analysis, least squares support vector regression (LS-SVR) with a good stability and high calculation speed is widely applied in regression problems of geospatial objects. According to Tobler’s First Law of Geography, near things are more related than distant things. However, very few studies have focused on the spatial dependence between geospatial objects via SVR. To comprehensively consider the spatial and attribute characteristics of geospatial objects, a geospatial LS-SVR model for geospatial data regression prediction is proposed in this paper. The 0–1 type and numeric-type spatial weight matrices are introduced as dependence measures between geospatial objects and fused into a single regression function of the LS-SVR model. Comparisons of the results obtained with the proposed and conventional models and other traditional models indicate that fusion of the spatial weight matrix can improve the prediction accuracy. The proposed model is more suitable for geospatial data regression prediction and enhances the ability of geospatial phenomena to explain geospatial data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.