BackgroundCircular RNAs (circRNAs) have been found to play critical roles in the development and progression of various cancers. However, little is known about the effects of the circular RNA network on glioblastoma multiforme (GBM).MethodsA microarray was used to screen circRNA expression in GBM. Quantitative real-time PCR was used to detect the expression of circMMP9. GBM cells were transfected with a circMMP9 overexpression vector or siRNA, and cell proliferation, migration and invasion, as well as tumorigenesis in nude mice, were assessed to examine the effect of circMMP9 in GBM. Biotin-coupled miRNA capture, fluorescence in situ hybridization and luciferase reporter assays were conducted to confirm the relationship between circMMP9 and miR-124.ResultsIn this study, we screened differentially expressed circRNAs and identified circMMP9 in GBM. We found that circMMP9 acted as an oncogene, was upregulated in GBM and promoted the proliferation, migration and invasion abilities of GBM cells. Next, we verified that circMMP9 served as a sponge that directly targeted miR-124; circMMP9 accelerated GBM cell proliferation, migration and invasion by targeting miR-124. Furthermore, we found that cyclin-dependent kinase 4 (CDK4) and aurora kinase A (AURKA) were involved in circMMP9/miR-124 axis-induced GBM tumorigenesis. Finally, we found that eukaryotic initiation factor 4A3 (eIF4A3), which binds to the MMP9 mRNA transcript, induced circMMP9 cyclization and increased circMMP9 expression in GBM.ConclusionsOur findings indicate that eIF4A3-induced circMMP9 is an important underlying mechanism in GBM cell proliferation, invasion and metastasis through modulation of the miR-124 signaling pathway, which could provide pivotal potential therapeutic targets for the treatment of GBM.Graphical abstract
Electronic supplementary materialThe online version of this article (10.1186/s12943-018-0911-0) contains supplementary material, which is available to authorized users.
Circular RNA and long noncoding RNA function as efficient miRNA sponges that regulate gene expression in eukaryotes. However, the sponges of functional miRNAs in glioblastoma remain largely unknown. Here, we identify a subset of circRNAs and lncRNAs that are specifically increased in miR-422a-downregulated glioblastoma tissues. We characterized a novel circRNA derived from NT5E, named circNT5E, that is regulated by ADARB2 binding to sites flanking circRNA-forming introns. We hypothesized that circNT5E may serve as a sponge against miR-422a in glioblastoma tumorigenesis. circNT5E controlled multiple pathologic processes, including cell proliferation, migration, and invasion. circNT5E directly bound miR-422a and inhibited miR-422a activity. Furthermore, circNT5E was observed to sponge other miRNAs, exhibiting tumor suppressor-like features in glioblastoma. Taken together, these findings highlight a novel oncogenic function of circRNA in glioblastoma tumorigenesis. Microarray profiling of circRNA/lncRNA/mRNA in glioblastoma identifies circNT5E as an oncogenic circular RNA and a sponge of miR-422a. .
Deregulation of the pituitary tumor transforming gene (PTTG1), a newly discovered oncogene, is a hallmark of various malignancies, including pituitary tumors. However, the mechanisms regulating PTTG1 expression are still needed to be explored. MicroRNAs (miRNAs) are a novel class of small RNA molecules that act as posttranscriptional regulators of gene expression and can play a significant role in tumor development. Here, we identified a series of miRNAs, namely, miR-329, miR-300, miR-381 and miR-655, which could target PTTG1 messenger RNA and inhibit its expression. Interestingly, all four miRNAs significantly that are downregulated in pituitary tumors were mapped to the 14q32.31 locus, which acts as a tumor suppressor in several cancers. Functional studies show that the PTTG1-targeting miRNAs inhibit proliferation, migration and invasion but induce apoptosis in GH3 and MMQ cells. Furthermore, overexpression of a PTTG1 expression vector lacking the 3′UTR partially reverses the tumor suppressive effects of these miRNAs. Next, we identified the promoter region of PTTG1-targeting miRNAs with binding sites for p53. In our hands, p53 transcriptionally activated the expression of these miRNAs in pituitary tumor cells. Finally, we found that PTTG1 could inhibit p53 transcriptional activity to the four miRNAs. These data indicate the existence of a feedback loop between PTTG1 targeting miRNAs, PTTG1 and p53 that promotes pituitary tumorigenesis. Together, these findings suggest that these PTTG1-targeting miRNAs are important players in the regulation of pituitary tumorigenesis and that these miRNAs may serve as valuable therapeutic targets for cancer treatment.
Background: Recent research has uncovered tumor-suppressive and oncogenic potential of miRNAs. Results: miR-873 suppresses the proliferation, migration, and invasiveness of GBM cells by targeting IGF2BP1. Conclusion: Down-regulation of miR-873 results in overexpressed IGF2BP1, contributing to tumorigenesis of GBM cells. Significance: The identification of tumor suppressor miR-873 and its oncogenic target IGF2BP1 in GBM cells is potentially valuable for cancer diagnosis and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.