Water electrolysis is an advanced energy conversion technology to produce hydrogen as a clean and sustainable chemical fuel, which potentially stores the abundant but intermittent renewable energy sources scalably. Since the overall water splitting is an uphill reaction in low efficiency, innovative breakthroughs are desirable to greatly improve the efficiency by rationally designing non-precious metal-based robust bifunctional catalysts for promoting both the cathodic hydrogen evolution and anodic oxygen evolution reactions. We report a hybrid catalyst constructed by iron and dinickel phosphides on nickel foams that drives both the hydrogen and oxygen evolution reactions well in base, and thus substantially expedites overall water splitting at 10 mA cm−2 with 1.42 V, which outperforms the integrated iridium (IV) oxide and platinum couple (1.57 V), and are among the best activities currently. Especially, it delivers 500 mA cm−2 at 1.72 V without decay even after the durability test for 40 h, providing great potential for large-scale applications.
A robust oxygen-evolving electrocatalyst was developed using a room-temperature strategy for water splitting at high current densities with low voltages.
With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.