Long noncoding RNAs (lncRNAs) play critical roles in the development of myocardial hypertrophy and may stimulate endogenous myocardial regeneration to prevent heart failure after myocardial infarction (MI). However, whether lncRNAs are involved in regulating myocardial regeneration after MI remains unclear. The present study aimed to identify human-derived lncRNAs that are involved in endogenous cardiomyocyte (CM) regeneration. By analyzing publicly available RNA-seq data of human fetal and normal adult cardiac tissues, we identified a novel human-derived adult upregulated lncRNA designated cardiomyocyte regeneration-related lncRNA (CRRL). Bioinformatics analysis indicated that CRRL is involved in the negative regulation of CM proliferation. First, we observed that the loss of CRRL attenuates post-MI remodeling and preserves cardiac function in adult rats. Through loss-of-function approaches, we found that CRRL knockdown promotes neonatal rat CM proliferation both in vivo and in vitro. Furthermore, we demonstrated that CRRL acts as a competing endogenous RNA (ceRNA) by directly binding to miR-199a-3p and thereby increasing the expression of Hopx, a target gene of miR-199a-3p and a critical negative regulatory factor of CM proliferation. Thus, CRRL suppresses cardiomyocyte regeneration by directly binding to miR-199a-3p, indicating that loss of CRRL facilitates myocardial regeneration and may be a new potential therapeutic strategy for heart failure.
It is effective and safe to enhance the skin permeation of GHK-Cu by using microneedles. This approach may be useful to deliver similar peptides or minerals through skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.