Objective To investigate the gut microbiota differences of obese children compared with the control healthy cohort to result in further understanding of the mechanism of obesity development. Methods We evaluated the 16S rRNA gene, the enterotypes, and quantity of the gut microbiota among obese children and the control cohort and learned the differences of the gut microbiota during the process of weight reduction in obese children. Results In the present study, we learned that the gut microbiota composition was significantly different between obese children and the healthy cohort. Next we found that functional changes, including the phosphotransferase system, ATP-binding cassette transporters, flagellar assembly, and bacterial chemotaxis were overrepresented, while glycan biosynthesis and metabolism were underrepresented in case samples. Moreover, we learned that the amount of Bifidobacterium and Lactobacillus increased among the obese children during the process of weight reduction. Conclusion Our results might enrich the research between gut microbiota and obesity and further provide a clinical basis for therapy for obesity. We recommend that Bifidobacterium and Lactobacillus might be used as indicators of healthy conditions among obese children, as well as a kind of prebiotic and probiotic supplement in the diet to be an auxiliary treatment for obesity.
BackgroundThe identification of cell-free fetal DNA (cffDNA) facilitated non-invasive prenatal screening (NIPS) through analysis of cffDNA in maternal plasma. However, challenges regarding its clinical implementation become apparent. Factors affecting fetal fraction should be clarified to guide its clinical application.ResultsA total of 13,661 pregnant subjects with singleton pregnancies who undertook NIPS were included in the study. Relationship of gestational age, maternal BMI, and maternal age with the cffDNA fetal fraction in maternal plasmas for NIPS was investigated. Compared with 13 weeks (12.74%) and 14–18 weeks group (12.73%), the fetal fraction in gestational ages of 19–23 weeks, 24–28 weeks, and more than 29 weeks groups significantly increased to 13.11%, 16.14%, and 21.17%, respectively (P < 0.01). Compared with fetal fraction of 14.54% in the maternal BMI group of < 18.5 kg/m2, the percentage of fetal fraction in the group of 18.5–24.9 kg/m2 (13.37%), 25–29.9 kg/m2 (12.20%), 30–34.9 kg/m2 (11.32%), and 35–39.9 kg/m2 (11.57%) decreased significantly (P < 0.01). Compared with the fetal fraction of 14.38% in the group of 18–24 years old, the fetal fraction in the maternal age group of 25–29 years old group (13.98%) (P < 0.05), 30–34 years old group (13.18%) (P < 0.01), 35–39 years old group (12.34%) (P < 0.01), and ≥ 40 years old (11.90%) group (P < 0.01) decreased significantly.ConclusionsThe percentage of fetal fraction significantly increased with increase of gestational age. Decreased fetal fraction with increasing maternal BMI was found. Maternal age was also negatively related to the fetal fraction.
Objective To evaluate the performance of noninvasive prenatal testing (NIPT) and NIPT-PLUS for the detection of genome-wide microdeletion and microduplication syndromes (MMSs) at different sequencing depths. The NIPT sequencing depth was 0.15X, and the data volume was 3 million reads; the NIPT-PLUS sequencing depth was 0.4X, and the data volume was 8 million reads. Methods A cohort of 50,679 pregnancies was recruited. A total of 42,969 patients opted for NIPT, and 7710 patients opted for NIPT-PLUS. All high-risk cases were advised to undergo invasive prenatal diagnosis and were followed up. Results A total of 373 cases had a high risk of a copy number variation (CNV) as predicted by NIPT and NIPT-PLUS: NIPT predicted 250 high-risk CNVs and NIPT-PLUS predicted 123. NIPT-PLUS increased the detection rate by 1.02% (0.58% vs 1.60%, p < 0.001). A total of 291 cases accepted noninvasive prenatal diagnosis, with 197 cases of NIPT and 94 cases of NIPT-PLUS. The PPV of CNV > 10 Mb for NIPT-PLUS was significantly higher than that for NIPT (p = 0.02). The total PPV of NIPT-PLUS was 12.56% higher than that of NIPT (43.61% vs 30.96%, p = 0.03). Conclusion NIPT-PLUS had a better performance in detecting CNVs in terms of the total detection rate and total PPV. However, great care must be taken in presenting results and providing appropriate counseling to patients when deeper sequencing is performed in clinical practice.
BackgroundCell-free fetal DNA in maternal plasma represents a source of fetal genetic material that can be sampled noninvasively. There are ample studies confirming the accuracy of NIPT in singleton pregnancies, but there is still relatively little studies demonstrate the feasibility and clinical application of a NIPT for fetal aneuploidy screening in twin pregnancies.ResultsIn this study, we have finished 432 twin pregnancies screening by NIPT. There were 4 double chorionic dichorionic diamniotic (DCDA) cases of true positive NIPT results, including 1of T18 and 3 of T21, and 1 monochorionic diamniotic (MCDA) cases of true positive NIPT results, including 1of T21. The combined false-positive frequency for trisomies 21, 18 was 0%. Furthermore, there were 2 cases of false positive NIPT results, including 1 of T7 and 1 of sex chromosome aneuploidy. There was no false negative case, which gave a combined sensitivity and specificity of 100 and 99.53% respectively.ConclusionOur study demonstrated NIPT performed well in the detection of trisomy 21 in twin pregnancy. It is feasible and clinical applicable of NIPT for fetal aneuploidy screening in twin pregnancies. But, it needs a large number of clinical samples to demonstrate the applicability of other chromosomal abnormalities besides trisomies 21 and 18 in both singleton pregnancies and twin pregnancies.
Background This study was an evaluation of the role of noninvasive prenatal testing (NIPT) in the detection of trisomy 7 in prenatal diagnosis. Method A total of 35 consecutive cases underwent screening for trisomies by cell-free DNA testing between April 2015 and November 2017 due to suspicious NIPT results; these cases represented 0.11% of patients (35/31,250) with similar frequencies of abnormal results among the laboratories performing the tests. NIPT was offered to further screen for common fetal chromosomal abnormalities. Karyotype analysis, chromosomal microarray analysis (CMA), and next-generation sequencing (NGS) were used to detect 20, 14, and 25 patients, respectively, who accepted confirmatory diagnostic testing. Results High-risk results by NIPT were recorded for trisomy 7 alone in 29 women: dual aneuploidy in 4 patients and multiple aneuploidy in 2 patients. Karyotype analysis of amniotic fluid cells was normal in all 20 pregnancies, suggesting a probability of confined placental mosaicism. Further CMA data were obtained in 14 of the cases mentioned above, and 2 fetuses were detected with positive results with copy number variation. The NGS results suggested that all these samples were placental chimerisms of chromosome 7, except for one sample that was found to be an additional chimerism of chromosome 2, which was also consistent with the NIPT result. Conclusion Our results may be useful for the counseling of pregnant women in the detection of trisomy 7 by NIPT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.