Wearable heaters have been increasingly attracting researchers' great interest due to their efficient utility in maintaining warmth and in thermotherapy. Nowadays carbon nanomaterials and metallic nanowires tend to become the mainstream heating elements in wearable heaters considering their excellent electrical and mechanical properties. Though considerable progress has been made, there still exist challenging issues that need to be addressed in practical applications, including bad breathability and poor endurance to mechanical deformations. Here, we devise a copper nanowire based composite fiber with a unique hierarchical structure. This fiber possesses not only excellent heating performance, but also fantastic tolerance to mechanical impact, such as bending, twisting, and stretching. We further weave these fibers into a wearable heating fabric and realize smart personal heating management through an Android phone by integrating with a microcontroller unit. Two practical applications are demonstrated including a heating kneepad for articular thermotherapy and a heating coat on an infant model for maintaining warmth.
Electronic skin (E-skin) has been attracting great research interest and effort due to its potential applications in wearable health monitoring, smart prosthetics, robot skins and so on. To expand its applications, two key challenges lie in the realization of device stretchability, and independent sensing of pressure and multidirectional lateral strain. Here we made a combination of rational device structure and artfully engineered sensing materials to fulfill the mentioned demands. The as-prepared E-skin took a simple orthogonal configuration to enable both capacitive mode for pressure sensing and resistive mode for multidirectional strain sensing, independently. Pre-cracked silver nanowire based fibers with helical microstructures were utilized as basic electrodes to endow the E-skin with intrinsic stretchability and strain sensing capability. Through dielectric layer optimization, the pressure sensing sensitivity was greatly enhanced, with a detection limit of 1.5 Pa. For application demonstrations, we utilized the E-skin as both flat and curved platforms for pressure mapping, and also as human motion sensors, such as palm and thumb bending.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.