Silicene, a two-dimensional (2D) honeycomb structure similar to graphene, has been successfully fabricated on an Ir(111) substrate. It is characterized as a (√7×√7) superstructure with respect to the substrate lattice, as revealed by low energy electron diffraction and scanning tunneling microscopy. Such a superstructure coincides with the (√3×√3) superlattice of silicene. First-principles calculations confirm that this is a (√3×√3)silicene/(√7×√7)Ir(111) configuration and that it has a buckled conformation. Importantly, the calculated electron localization function shows that the silicon adlayer on the Ir(111) substrate has 2D continuity. This work provides a method to fabricate high-quality silicene and an explanation for the formation of the buckled silicene sheet.
The reversible control of a single spin of an atom or a molecule is of great interest in Kondo physics and a potential application in spin based electronics. Here we demonstrate that the Kondo resonance of manganese phthalocyanine molecules on a Au(111) substrate have been reversibly switched off and on via a robust route through attachment and detachment of single hydrogen atom to the magnetic core of the molecule. As further revealed by density functional theory calculations, even though the total number of electrons of the Mn ion remains almost the same in the process, gaining one single hydrogen atom leads to redistribution of charges within 3d orbitals with a reduction of the molecular spin state from S = 3/2 to S = 1 that directly contributes to the Kondo resonance disappearance. This process is reversed by a local voltage pulse or thermal annealing to desorb the hydrogen atom.
Cyclotrimerization of alkynes to aromatics represents a promising approach to two-dimensional conjugated networks due to its single-reactant and atom-economy attributes, in comparison with other multicomponent coupling reactions. However, the reaction mechanism of alkyne cyclotrimerization has not yet been well understood due to characterization challenges. In this work, we take a surface reaction approach to study fundamental polymerization mechanism by using a diyne monomer named 4,4'-diethynyl-1,1'-biphenyl as a test bed. We have succeeded in directly characterizing reactants, intermediates, and their reaction products with the aid of scanning tunneling microscope, which allows us to gain mechanistic insights into the reaction pathways. By combining with density functional theory calculation, our result has revealed for the first time that the polycyclotrimerization is a two-step [2+2+2] cyclization reaction. This work provides an in-depth understanding of polycyclotrimerization process at the atomic level, offering a new avenue to design and construct of single-atom-thick conjugated networks.
We develop a strategy for graphene growth on Ru(0001) followed by silicon-layer intercalation that not only weakens the interaction of graphene with the metal substrate but also retains its superlative properties. This G/Si/Ru architecture, produced by silicon-layer intercalation approach (SIA), was characterized by scanning tunneling microscopy/spectroscopy and angle resolved electron photoemission spectroscopy. These experiments show high structural and electronic qualities of this new composite. The SIA allows for an atomic control of the distance between the graphene and the metal substrate that can be used as a top gate. Our results show potential for the next generation of graphene-based materials with tailored properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.