It is critical to protect coastal and offshore structures. Most current studies and scientific investigations are centered on how to protect seashore with an efficient and cost-effective system. This study involved the testing of a new floating breakwater configuration (FB). A series of experiments were carried out in the lab of The Higher Institute of Engineering (El-shorouk City) on the new model and the traditional vertical plane FB without a curved face to compare their behaviours and performance in wave attenuation. The incident, reflected, and transmitted wave heights were measured, and the coefficients of reflection, transmission, and energy dissipation were calculated using these measurements. In terms of hydrodynamic performance, the curved-face floating breakwater outperformed the traditional vertical floating breakwater, according to the study's highlights. The curved face model significantly reduced wave transmission values when compared to the traditional vertical configuration. The greater the concavity of the curve, the better the model handles waves, especially when the wave steepness is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.