The maximization of volumetric heat transfer density from radially finned tubes in cross‐flow is investigated in this study based on the constructal design method. A row of radially finned tubes is placed in cross‐air flow. The tubes and the radial fins are heated at uniform temperatures and cooled by the air cross‐flow. The cross‐air flow is generated by a finite pressure difference. Two dimensionless pressure differences (Bejan number) are considered (Be = 103 and Be = 105). The objective function, the degrees of freedom, and the constraints in the constructal design method should be identified. The objective function is the maximization of the heat transfer density from the finned tubes. The degrees of freedom are; the fin tip‐to‐fin tip spacing, the number of fins, the tube diameter, the fin thickness, and the angle between the fins. The constraints are the length and height of the space occupied by the finned tubes. The pressure‐driven flow and energy equations (steady, two‐dimensional, and incompressible) are solved by means of the finite volume method. The ranges of the dimensionless fin tip‐to‐fin tip spacing are (0.2 ≤ S ≤ 1 for Be = 103 and 0.05≤ S ≤ 0.3 for Be = 105). The number of fins is changed as (N = 2, 4, 6, 8, 10, and 12). The dimensionless tube diameter is changed as (D = 0.25, 0.5, and 0.75). The dimensionless fin thickness is changed as (T = 0.001, 0.01, and 0.05). The results showed that for both (Be = 103) and (Be = 105), the highest value of the maximum volumetric heat transfer density is for (N = 2) and decreases as the number of fins increases. In addition, the minimum values of the maximum volumetric heat transfer density occur when the vertical fins exist at (N = 4, 8, and 12).
Forced vibration has been experimentally investigated on a model consists of circular pipe with1.6m length. The pipe built in tank (1.2m length, 0.6m height and 0.6m width) horizontally at 0.4m height with two different diameters d=15mm and d=35mm. The pipe conveying laminar flow in the fully developed region, of Reynolds number equals 2000. The experimental results of span pipe conveying water at five stations of forced excitation vibration were studied. The harmonic forced vibration with two different excitation frequencies (10 Hz and 15 Hz) are imposed at all of the five locations. The distance between two stations is (0.2m). Two conditions of pipe environment have been applied, the first in air and the other was immersed in water. It is concluded that the effect of flow induced vibration due to the pipe conveying fluid increases the maximum deflection when the fluid speed increases. The water surrounds the pipes reduce the effect of excitation vibration about (33 – 46%). The effect difference between the excitation frequencies was about (4 – 7%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.