Abstract-A novel adaptive optical splitter structure employing an Opto-VLSI processor and 4-f imaging system is proposed and experimentally demonstrated. By driving the Opto-VLSI processor with computer generated multicasting phase holograms, an input optical signal launched into an input optical fiber port can be split and coupled into many output optical fiber ports with arbitrary splitting ratios. A proof-of-principle 1 2 adaptive optical splitter structure driven by optimized multicasting phase holograms uploaded onto the Opto-VLSI processor is developed, demonstrating an arbitrary splitting ratio over a wavelength range exceeding 50 nm.Index Terms-Adaptive optical splitter, beam splitter, liquid crystal devices, optical communication, opto-VLSI processor.
Synthesis of large-area hexagonal boron nitride (h-BN) films for two-dimensional (2D) electronic applications typically requires high temperatures (∼1000 °C) and catalytic metal substrates which necessitate transfer. Here, analogous to plasma-enhanced chemical vapor deposition, a nonthermal plasma is employed to create energetic and chemically reactive states such as atomic hydrogen and convert a molecular precursor film to h-BN at temperatures as low as 500 °C directly on metal-free substratesa process we term plasma-enhanced chemical film conversion (PECFC). Films containing ammonia borane as a precursor are prepared by a variety of solution processing methods including spray deposition, spin coating, and inkjet printing and reacted in a cold-wall reactor with a planar dielectric barrier discharge operated at atmospheric pressure in a background of argon or a mixture of argon and hydrogen. Systematic characterization of the converted h-BN films by micro-Raman spectroscopy shows that the minimum temperature for nucleation on silicon-based substrates can be decreased from 800 to 500 °C by the addition of a plasma. Furthermore, the crystalline domain size, as reflected by the full width at half-maximum, increased by more than 3 times. To demonstrate the potential of the h-BN films as a gate dielectric in 2D electronic devices, molybdenum disulfide field effect transistors were fabricated, and the field effect mobility was found to be improved by up to 4 times over silicon dioxide. Overall, PECFC allows h-BN films to be grown at lower temperatures and with improved crystallinity than CVD, directly on substrates suitable for electronic device fabrication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.