To study the first flush effect of nonpoint source pollution in the Guangzhou community unit, runoff from roads, roofs, and green spaces during three rainfall events was collected and analyzed for pollutants. Nine runoff pollution indices were considered. The dimensionless cumulative curve of pollutant mass vs. volume, the first flush coefficient (b) and the mass first flush ratio (MFFn) were used to assess the first flush effect of different underlying surfaces. The assessment results pointed out that the roof was most prone to first flush effect. And ammonia nitrogen and phosphorus were the main pollutants in the first flush in the study area. For a quantitative analysis of the first flush, the Storm Water Management Model (SWMM) was used to simulate the hydrological effect of low impact development (LID) implementation in the community. The results showed that the first flush strength was reduced after setting LID. And LID measures, such as green roofs and sunken green spaces, contribute to flood control and rainwater purification. This research can be relevant regarding for constructing sponge cities and reducing the pollution caused by the first flush.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.