Ultrasound is an innovative physical modality allowing non-invasive and reversible modulation of neural circuit activity in the brain with high spatial resolution. Despite growing interest in clinical applications, the safe and effective use of ultrasound neuromodulation has been limited by a lack of understanding of the physical mechanisms underlying its effects. Here, we demonstrate acoustic frequency-dependent physical effects that underlie ultrasound neuromodulation, where cavitation and radiation forces are the dominant sources of low- and high-frequency stimulation, respectively. We used 39.5 kHz and 500 kHz acoustic frequencies to stimulate cultured neural and glial cells, excised from rat cortex, to study acoustic frequency-dependent neural responses. We demonstrate increased evoked responses due to increased cavitation activity at the 39.5 kHz acoustic frequency. In contrast, notable cavitation activity was not detected at 500 kHz despite detection of evoked responses. Our work highlights the dependence of ultrasound neuromodulation on acoustic frequencies, with different physical effects underlying cell responses to low and high sub-MHz acoustic frequency ranges.
Ultrasound allows non-invasive and reversible modulation of neural circuit activity with high spatial resolution. Despite growing interest in clinical applications, the safe and effective use of ultrasound neuromodulation has been limited by a lack of understanding of the physical mechanisms underlying its effects. Here, we demonstrate acoustic frequency-dependent physical effects that underlie ultrasound neuromodulation, where cavitation and radiation forces are the dominant sources of low- and high-frequency stimulation, respectively. We used 39.5 kHz and 500 kHz acoustic frequencies to stimulate cultured neural and glial cells to study acoustic frequency-dependent neural responses. We demonstrate increased evoked responses due to increased cavitation activity at the 39.5 kHz acoustic frequency. In contrast, notable cavitation activity was not detected at 500 kHz despite detection of evoked responses. Our work highlights the dependence of ultrasound neuromodulation on acoustic frequencies, with different physical effects underlying cell responses to low and high sub-MHz acoustic frequency ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.