We propose a design of an ultra-broadband absorber based on a thin metamaterial nanostructure composed of a periodic array of titanium-silica (Ti-SiO) cubes and an aluminum (Al) bottom film. The proposed structure can achieve nearly perfect absorption with an average absorbance of 97% spanning a broad range from visible to near-infrared (i.e., from 354 nm to 1066 nm), showing a 90% absorption bandwidth over 712 nm, and the peak absorption is up to 99.8%. The excitation of superior surface plasmon resonance combined with the resonance induced by the metal-insulator-metal Fabry-Perot (FP) cavity leads to this broadband perfect absorption. The polarization and angle insensitivity is demonstrated by analyzing the absorption performance with oblique incidences for both TE- and TM-polarized waves. In addition, we discuss the impact of various metal materials and geometry structure on absorption performance in detail. The proposed broadband metamaterial absorber shows a promising prospect in applications such as solar cell, infrared detection, and imaging. Moreover, the use of a thin titanium cap and an aluminum film instead of noble metals has the potential to reduce production cost in applications.
In this paper, a silicon-based terahertz wideband filter was designed using rigorous couple wave theory to achieve high diffraction efficiency and wideband filtering performance. The optimal parameters, such as filter period, duty ratio, and groove depth, are given. The design value and tolerance analysis were carried out to obtain the allowable deviation range of each structural parameter of the filter. The device was fabricated and tested for performance. The experimental results were consistent with the design results, proving the feasibility of the design method and can be applied in terahertz, communication, imaging, and other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.