Molecules containing a nitrogen-nitrogen (N-N) linkage have a variety of structures and biological activities; however, no enzyme has yet been demonstrated to catalyze N-N bond formation in an organic molecule. Here we report that the heme-dependent enzyme KtzT from Kutzneria sp. 744 catalyzes N-N bond formation in the biosynthesis of piperazate, a building block for nonribosomal peptides.
Nitric
oxide (NO) has wide-ranging roles in biology, but less is
known about its role in building chemical diversity. Here we report
a new route to NO from the biosynthetic pathway to the N-nitroso compound streptozocin. We show that the N-nitroso group of streptozocin comes from the biosynthetic reassembly
of l-arginine, with the guanidino nitrogens forming a nitrogen–nitrogen
bond. To understand this biosynthetic process, we identify the biosynthetic
gene cluster of streptozocin and demonstrate that free l-arginine
is N-methylated by StzE to give N
ω-monomethyl-l-arginine. We show that this
product is then oxidized by StzF, a nonheme iron-dependent enzyme
unrelated to known nitric oxide synthases, generating a urea compound
and NO. Our work implies that formation and capture of NO is the likely
route to N-nitroso formation in vivo. Altogether,
our work unveils a new enzyme pair for the production of NO from l-arginine and sets the stage for understanding biosynthetic
routes to N-nitroso natural products.
FR901464, an antitumor natural product, represents a new class of potent anticancer small molecules targeting spliceosome and inhibiting both splicing and nuclear retention of pre-mRNA. Herein we describe the biosynthetic gene cluster of FR901464, identified by degenerate primer PCR amplification of a gene encoding the 3-hydroxy-3-methylglutaryl-CoA synthase (HCS) postulated to be involved in the biosynthesis of a β-branched polyketide from Pseudomonas sp. No. 2663. This cluster consists of twenty open reading frames (ORFs) and was localized to 93-kb DNA segment, and its involvement in FR901464 biosynthesis was confirmed by gene inactivation and complementation. FR901464 is biosynthesized by a hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS), HCS, and acyltransferases (AT)-less system. The PKS/NRPS modules feature unusual domain organization including multiple domain redundancy, inactivation, and tandem. Biochemical characterization of a glyceryl transferase and an acyl carrier protein (ACP) in the start module revealed that it incorporates D-1,3-bisphosphoglycerate, which is dephosphorylated and transferred to ACP as the starter unit. Furthermore, an oxidative Baeyer-Villiger reaction followed by chain release was postulated to form a pyran moiety. On the basis of in silico analysis and genetic and biochemical evidances, a biosynthetic pathway for FR901464 was proposed, which sets the stage to further investigate the complex PKS biochemically and engineer the biosynthetic machinery for the production of novel analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.