Gastric cancer (GC) has one of the highest mortality rates of malignancies globally. Currently, ciRS-7, a novel circular RNA, has emerged as a potential sponge for miR-7. However, few studies on ciRS-7 in GC have been performed. In this study, we investigated the clinical significance and function of ciRS-7 in GC. First, the expression levels of ciRS-7 in 102 primary GC tissues and the matched para-carcinoma tissues were evaluated and the clinical relevance was confirmed in an independent validation cohort (n ¼ 154). Second, the effects of ciRS-7 on miR-7, PTEN, and PI3K were evaluated. Finally, the function of ciRS-7 in GC was analyzed with cell lines and nude mice. The expression of ciRS-7 was significantly upregulated in GC tissues compared with the matched para-carcinoma tissues (P ¼ 0.0023), and the upregulation of ciRS-7 was linked to poor survival in the testing (P ¼ 0.0143) and validation cohort (P ¼ 0.0061). Multivariate survival analysis revealed that ciRS-7 was probably an independent risk factor of overall survival (P < 0.05). Furthermore, overexpression of ciRS-7 blocked the miR-7-induced tumor suppression in MGC-803 and HGC-27 cells and led to a more aggressive oncogenic phenotype, via antagonizing miR-7-mediated PTEN/PI3K/AKT pathway. ciRS-7 may act as a prospective prognostic biological marker and a promising therapeutic target for GC.
Impaired wound healing is one of the major complications of diabetes, involving prolonged inflammation, delayed re-epithelialization, and consistent oxidative stress. The detailed mechanism remains unclear, and there is currently no effective treatment for diabetic wound healing. In this study, we aim to investigate the potential role and effect of nuclear factor erythroid-2–related factor-2 (Nrf2) activation on diabetic wound healing. In vitro experiments in rat macrophages showed that hyperglycemia treatment suppresses Nrf2 activation, resulting in oxidative stress with decreased expression of antioxidant genes, including NAD(P)H:quinone oxidoreductase 1 and heme oxygenase 1, together with increased secretion of proinflammatory cytokines, including interleukin 1β (IL1β), IL6, and monocyte chemoattractant protein-1. Both Nrf2 overexpression and Nrf2 activator dimethyl fumarate (DMF) treatment significantly ameliorated oxidative stress and inflammation. On the other hand, both Nrf2 knockdown or Nrf2 inhibitor ML385 mimicked the effect of diabetes. Further in vivo experiments in rats showed that DMF treatment significantly accelerated wound healing in streptozocin-induced diabetic rats with increased expression of antioxidant enzymes and decreased secretion of proinflammatory cytokines, while Nrf2 inhibitor ML385 mimicked the effect of diabetes. We conclude that Nrf2 activation accelerates impaired wound healing by ameliorating diabetes-mediated oxidative stress and inflammation. This provides a new clinical treatment strategy for diabetic wound healing using Nrf2 activator DMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.