One of the most chronic constraints to crop production is the grain yield reduction near the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly in wheat and rice. Major factors associated with lodging involve morphological and anatomical traits along with the chemical composition of the stem. These traits have built up the remarkable relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance. In this review, we have made a comparison of our conceptual perceptions with foregoing published reports and proposed the fundamental controlling techniques that could be practiced to control the devastating effects of lodging stress. The management of lodging stress is, however, reliant on chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and rice. But, still, there are many questions remain to be answered to elucidate the complex lodging phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further investigation to address this challenging problem.
BackgroundIntronless genes are a feature of prokaryotes; however, they are widespread and unequally distributed among eukaryotes and represent an important resource to study the evolution of gene architecture. Although many databases on exons and introns exist, there is currently no cohesive database that collects intronless genes in plants into a single database.DescriptionIn this study, we present the Poaceae Intronless Genes Database (PIGD), a user-friendly web interface to explore information on intronless genes from different plants. Five Poaceae species, Sorghum bicolor, Zea mays, Setaria italica, Panicum virgatum and Brachypodium distachyon, are included in the current release of PIGD. Gene annotations and sequence data were collected and integrated from different databases. The primary focus of this study was to provide gene descriptions and gene product records. In addition, functional annotations, subcellular localization prediction and taxonomic distribution are reported. PIGD allows users to readily browse, search and download data. BLAST and comparative analyses are also provided through this online database, which is available at http://pigd.ahau.edu.cn/.ConclusionPIGD provides a solid platform for the collection, integration and analysis of intronless genes in the Poaceae. As such, this database will be useful for subsequent bio-computational analysis in comparative genomics and evolutionary studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.