The rhizospheric microbial community is one of the major environmental factors affecting the distribution and fitness of plants. Ancient wild tea plants are rare genetic resource distributed in Southwest China. In this study, we investigated that rhizospheric bacterial communities of ancient wild tea plants along the elevational gradients (2050, 2200, 2350 and 2500 m) in QianJiaZhai Reserve of Ailao Mountains. According to the Illumina MiSeq sequencing of 16 S rRNA gene amplicons, Proteobacteria, Acidobacteria and Actinobacteria were the dominant phyla with the relative abundance 43.12%, 21.61% and 14.84%, respectively. The Variibacter was the most dominant genus in rhizosphere of ancient wild tea plant. Phylogenetic null modeling analysis suggested that rhizospheric bacterial communities of ancient wild tea plants were more phylogenetically clustered than expected by chance. The bacterial community at 2050 m was unique with the highest alpha diversity, tend to cluster the nearest taxon and simple co-occurrence network structure. The unique bacterial community was correlated to multiple soil factors, and the content soil ammonium nitrogen (nH 4 +-N) was the key factor affecting the diversity and distribution of bacterial community along the elevational gradients. This study provided the necessary basic information for the protection of ancient tea trees and cultivation of tea plants.
Continuous cropping leads to the development of serious fungal diseases in tobacco plants and depleted yield of tobacco (Nicotiana tabacum), which can be mitigated by organic fertilization. Yet, we know little about how organic fertilizers affect the fungal community of continuous cropping tobacco soil. In this study, we investigated the soil fungal community after 11 years of tobacco planting with chemical fertilization (CF) or chemical fertilization combined with organic fertilizers obtained from plant or animal origin, including oil cake (CFO), straw (CFS), and farmyard fertilizer (CFM). The predominant phyla of Ascomycota (70%) and Mortierellomycota (15%) were identified in all the treatments. A significantly higher proportion of Pyrenochaetopsis and lower relative abundance of Sordariomycetes were observed in the CFM group compared to the controls. Compared to CF and non-fertilized control (CK), CFO and CFS led to higher species richness (P < 0.05), while CFM led to a less uniform fungal community, indicated by lower Shannon and higher Simpson diversity indices (P < 0.05). Pearson’s correlation and redundancy analysis suggested that fertilizations primarily influenced the fungal community by altering the soil nutrient conditions, among which soil organic carbon and total phosphorus significantly correlated with the fungal diversity and community composition (P < 0.05). Notably, FUNGuild annotation suggested that while other treatments showed no significant effect on the fungal trophic modes, CFM strongly increased the abundance of saprotrophic fungi by more than 30% (P < 0.05), thus preventing the prevalence of potential pathotypes and symbionts. The results suggest that the type of organic fertilizers is essential to the long-term effects of organic application on the fungal community, and the animal-origin manure seems to be a better choice than plant-origin materials in continuous cropping tobacco fields.
Despite many studies on the influence of cropping practices on soil microbial community structure, little is known about ecological patterns of rare and abundant microbial communities in response to different tobacco cropping systems. Here, using the high-throughput sequencing technique, we investigated the impacts of two different cropping systems on soil biochemical properties and the microbial community composition of abundant and rare taxa and its driving factors in continuous and rotational tobacco cropping systems in the mountain lands of Yunnan, China. Our results showed that distinct co-occurrence patterns and driving forces for abundant and rare taxa across the different cropping systems. The abundant taxa were mainly constrained by stochastic processes in both cropping systems. In contrast, rare taxa in continuous cropping fields were mainly influenced by environmental perturbation (cropping practice), while governed by deterministic processes under rotational cropping. The α-diversity indices of rare taxa tended to be higher than those of the abundant ones in the two cropping systems. Furthermore, the network topologies of rare taxa were more complex than those of the abundant taxa in the two cropping systems. These results highlight that rare taxa rather than abundant ones play important roles in maintaining ecosystem diversity and sustaining the stability of ecosystem functions, especially in continuous cropping systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.