A theoretical model for simulating ionizing radiation effects on negative capacitance field-effect transistors (NCFETs) with a metal–ferroelectric–insulator–semiconductor (MFIS) structure was established. Based on the model, the effects of total ionizing dose (TID) and dose rate on the surface potential, ferroelectric capacitance, voltage amplification factor, and transfer characteristics of NCFETs were investigated. The simulation results demonstrated that, with the increase in total dose, the curves of surface potential versus gate voltage and driving current versus gate voltage shift left significantly, resulting in the point of voltage amplification shifting left. Meanwhile, with the increase in dose rate, the amplitude of both the surface potential and driving current decreases slightly. Meanwhile, the derived result indicated that relatively thin ferroelectric thickness can effectively reduce the effect of TID. It is expected that this model can be helpful for analyzing the radiation effects of NCFETs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.