We introduce the notion of reproducing kernel Banach spaces (RKBS) and study special semiinner-product RKBS by making use of semi-inner-products and the duality mapping. Properties of an RKBS and its reproducing kernel are investigated. As applications, we develop in the framework of RKBS standard learning schemes including minimal norm interpolation, regularization network, support vector machines, and kernel principal component analysis. In particular, existence, uniqueness and representer theorems are established.
We explore convergence of deep neural networks with the popular ReLU activation function, as the depth of the networks tends to infinity. To this end, we introduce the notion of activation domains and activation matrices of a ReLU network. By replacing applications of the ReLU activation function by multiplications with activation matrices on activation domains, we obtain an explicit expression of the ReLU network. We then identify the convergence of the ReLU networks as convergence of a class of infinite products of matrices. Sufficient and necessary conditions for convergence of these infinite products of matrices are studied. As a result, we establish necessary conditions for ReLU networks to converge that the sequence of weight matrices converges to the identity matrix and the sequence of the bias vectors converges to zero as the depth of ReLU networks increases to infinity. Moreover, we obtain sufficient conditions in terms of the weight matrices and bias vectors at hidden layers for pointwise convergence of deep ReLU networks. These results provide mathematical insights to the design strategy of the well-known deep residual networks in image classification.
For adaptive representation of nonlinear signals, the bank M of real square integrable functions that have nonlinear phases and nonnegative instantaneous frequencies under the analytic signal method is investigated. A particular class of functions with explicit expressions in M is obtained using Communicated by Qiyu Sun. 76 T. Qian et al.recent results on the Bedrosian identity. We then construct orthonormal bases for the Hilbert space of real square integrable functions with the basis functions from M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.