We study photon-photon correlations and entanglement generation in a one-dimensional waveguide coupled to two qubits with an arbitrary spatial separation. To treat the combination of nonlinear elements and 1D continuum, we develop a novel Green function method. The vacuum-mediated qubit-qubit interactions cause quantum beats to appear in the second-order correlation function. We go beyond the Markovian regime and observe that such quantum beats persist much longer than the qubit lifetime. A high degree of long-distance entanglement can be generated, increasing the potential of waveguide-QED systems for scalable quantum networking.
Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock-and coherent-state wave packets, especially in the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two-and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light.
Learning subtle yet discriminative features (e.g., beak and eyes for a bird) plays a significant role in fine-grained image recognition. Existing attention-based approaches localize and amplify significant parts to learn fine-grained details, which often suffer from a limited number of parts and heavy computational cost. In this paper, we propose to learn such fine-grained features from hundreds of part proposals by Trilinear Attention Sampling Network (TASN) in an efficient teacher-student manner. Specifically, TASN consists of 1) a trilinear attention module, which generates attention maps by modeling the inter-channel relationships, 2) an attention-based sampler which highlights attended parts with high resolution, and 3) a feature distiller, which distills part features into an object-level feature by weight sharing and feature preserving strategies. Extensive experiments verify that TASN yields the best performance under the same settings with the most competitive approaches, in iNaturalist-2017, CUB-Bird, and Stanford-Cars datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.