ObjectivesThe incidence of type 2 diabetes mellitus has increased significantly in recent years. With the development of artificial intelligence applications in healthcare, they are used for diagnosis, therapeutic decision making, and outcome prediction, especially in type 2 diabetes mellitus. This study aimed to identify the artificial intelligence (AI) applications for type 2 diabetes mellitus care.MethodsThis is a review conducted in 2018. We searched the PubMed, Web of Science, and Embase scientific databases, based on a combination of related mesh terms. The article selection process was based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Finally, 31 articles were selected after inclusion and exclusion criteria were applied. Data gathering was done by using a data extraction form. Data were summarized and reported based on the study objectives.ResultsThe main applications of AI for type 2 diabetes mellitus care were screening and diagnosis in different stages. Among all of the reviewed AI methods, machine learning methods with 71% (n = 22) were the most commonly applied techniques. Many applications were in multi method forms (23%). Among the machine learning algorithms applications, support vector machine (21%) and naive Bayesian (19%) were the most commonly used methods. The most important variables that were used in the selected studies were body mass index, fasting blood sugar, blood pressure, HbA1c, triglycerides, low-density lipoprotein, high-density lipoprotein, and demographic variables.ConclusionsIt is recommended to select optimal algorithms by testing various techniques. Support vector machine and naive Bayesian might achieve better performance than other applications due to the type of variables and targets in diabetes-related outcomes classification.
Given the impact of health literacy (HL) on patients' outcomes, limited health literacy is a major barrier to improve cancer care globally. HL refers to the degree in which an individual is able to acquire, process, and comprehend information in a way to be actively involved in their health decisions. Previous research found that almost half of the population in developed countries have difficulties in understanding health-related information. With the gradual shift toward the shared decision making process and digital transformation in oncology, the need for addressing low HL issues is crucial. Decision making in oncology is often accompanied by considerable consequences on patients' lives, which requires patients to understand complex information and be able to compare treatment methods by considering their own values. How health information is perceived by patients is influenced by various factors including patients' characteristics and the way information is presented to patients. Currently, identifying patients with low HL and simple data visualizations are the best practice to help patients and clinicians in dealing with limited health literacy. Furthermore, using eHealth, as well as involving HL mediators, supports patients to make sense of complex information.
Introduction Shared decision-making (SDM) refers to the collaboration between patients and their healthcare providers to make clinical decisions based on evidence and patient preferences, often supported by patient decision aids (PDAs). This study explored practitioner experiences of SDM in a context where SDM has been successfully implemented. Specifically, we focused on practitioners’ perceptions of SDM as a paradigm, factors influencing implementation success, and outcomes. Methods We used a qualitative approach to examine the experiences and perceptions of 10 Danish practitioners at a cancer hospital experienced in SDM implementation. A semi-structured interview format was used and interviews were audio-recorded and transcribed. Data was analyzed through thematic analysis. Results Prior to SDM implementation, participants had a range of attitudes from skeptical to receptive. Those with more direct long-term contact with patients (such as nurses) were more positive about the need for SDM. We identified four main factors that influenced SDM implementation success: raising awareness of SDM behaviors among clinicians through concrete measurements, supporting the formation of new habits through reinforcement mechanisms, increasing the flexibility of PDA delivery, and strong leadership. According to our participants, these factors were instrumental in overcoming initial skepticism and solidifying new SDM behaviors. Improvements to the clinical process were reported. Sustaining and transferring the knowledge gained to other contexts will require adapting measurement tools. Conclusions Applying SDM in clinical practice represents a major shift in mindset for clinicians. Designing SDM initiatives with an understanding of the underlying behavioral mechanisms may increase the probability of successful and sustained implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.