Background: Tropomyosin and arginine kinase have been identified as crustacean allergens. During purification of arginine kinase from black tiger shrimp Penaeus monodon, we found a new allergen of 20-kDa. Methods: A 20-kDa allergen was purified from the abdominal muscle of black tiger shrimp by salting-out, anion-exchange HPLC and reverse-phase HPLC. Following digestion of the 20-kDa allergen with lysyl endopeptidase, peptide fragments were isolated by reverse-phase HPLC, and 2 of them were sequenced. The 20-kDa allergen, together with tropomyosin and arginine kinase purified from black tiger shrimp, was evaluated for IgE reactivity by ELISA. Five species of crustaceans (kuruma shrimp, American lobster, pink shrimp, king crab and snow crab) were surveyed for the 20-kDa allergen by immunoblotting. Results: The 20-kDa allergen was purified from black tiger shrimp and identified as a sarcoplasmic calcium-binding protein (SCP) based on the determined amino acid sequences of 2 enzymatic fragments. Of 16 sera from crustacean-allergic patients, 8 and 13 reacted to SCP and tropomyosin, respectively; the reactivity to arginine kinase was weakly recognized with 10 sera. In immunoblotting, an IgE-reactive 20-kDa protein was also detected in kuruma shrimp, American lobster and pink shrimp but not in 2 species of crab. Preadsorption of the sera with black tiger shrimp SCP abolished the IgE reactivity of the 20-kDa protein, suggesting the 20-kDa protein to be an SCP. Conclusions: SCP is a new crustacean allergen, and distribution of IgE-reactive SCP is probably limited to shrimp and crayfish.
Parallel G-quadruplexes formed from oligonucleotide sequences, d(TTAGn), where n = 3-5, have been shown to form a dimer through end-to-end stacking of 3'-terminal G-tetrads. The monomers and dimers of the G-quadruplexes are in dynamic equilibrium with an exchange rate of approximately 1 s-1. A thermodynamic study demonstrated that the dimerization of the G-quadruplexes is largely enthalpic in origin.
Pseudomonas aeruginosa cytochrome c(551) and a series of its mutants exhibiting various thermostabilities have been studied by paramagnetic (1)H NMR and cyclic voltammetry in an effort to elucidate the molecular mechanisms responsible for control of the redox potentials (E degrees ') of the proteins. The study revealed that the E degrees ' value of the protein is regulated by two molecular mechanisms operating independently of each other. One is based on the Fe-Met coordination bond strength in the protein, which is determined by the amino acid side chain packing in the protein, and the other on the pK(a) of the heme 17-propionic acid side chain, which is affected by the electrostatic environment. The former mechanism alters the magnitude of the E degrees ' value throughout the entire pH range, and the latter regulates the pK values reflected by the pH profile of the E degrees ' value. These findings provide novel insights into functional regulation of the protein, which could be utilized for tuning the E degrees ' value of the protein by means of protein engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.