Motivation Compound-protein interaction (CPI) plays an essential role in drug discovery and is performed via expensive molecular docking simulations. Many artificial intelligence-based approaches have been proposed in this regard. Recently, two types of models have accomplished promising results in exploiting molecular information: graph convolutional neural networks that construct a learned molecular representation from a graph structure (atoms and bonds), and neural networks that can be applied to compute on descriptors or fingerprints of molecules. However, the superiority of one method over the other is yet to be determined. Modern studies have endeavored to aggregate information that is extracted from compounds and proteins to form the CPI task. Nonetheless, these approaches have used a simple concatenation to combine them, which cannot fully capture the interaction between such information. Results We propose the Perceiver CPI network, which adopts a cross-attention mechanism to improve the learning ability of the representation of drug and target interactions and exploits the rich information obtained from extended-connectivity fingerprints to improve the performance. We evaluated Perceiver CPI on three main datasets, Davis, KIBA, and Metz, to compare the performance of our proposed model with that of state-of-the-art methods. The proposed method achieved satisfactory performance and exhibited significant improvements over previous approaches in all experiments. Availability Perceiver CPI is available at https://github.com/dmis-lab/PerceiverCPI Supplementary information Supplementary data are available at Bioinformatics online.
We propose a computational approach for recipe ideation, a downstream task that helps users select and gather ingredients for creating dishes. To perform this task, we developed RecipeMind, a food anity score prediction model that quanties the suitability of adding an ingredient to set of other ingredients. We constructed a large-scale dataset containing ingredient co-occurrence based scores to train and evaluate RecipeMind on food anity score prediction. Deployed in recipe ideation, RecipeMind helps the user expand an initial set of ingredients by suggesting additional ingredients. Experiments and qualitative analysis show RecipeMind's potential in fullling its assistive role in cuisine domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.