We report the epitaxial growth of c-plane GaN films on a novel langasite IJLa 3 Ga 5 SiO 14 , LGS) substrate by plasma-assisted molecular beam epitaxy. The in-plane epitaxial relationship and the structural properties of GaN films on an LGS substrate were investigated using in situ reflective high energy electron diffraction (RHEED), high resolution X-ray diffraction (HR-XRD) and Raman spectroscopy. The in-plane epitaxial relationship between GaN and LGS determined using RHEED pattern was found to be GaNij1010]//LGSij2130]and GaNij1120]//LGSij1450]. HR-XRD results confirmed the exact epitaxial relationship, and showed that six reflection peaks of GaNIJ1012) were shifted around 19°from those of LGSIJ1012). Raman analysis revealed that a minute compressive strain still existed in the GaN film due to the very small lattice mismatch between GaN and LGS. The results obtained in this study demonstrate that the nearly lattice-matched LGS can be a promising and futuristic substrate material for the growth of GaN, and it is foreseen that our results could be a reference for the further development of high performance nitride-based devices.
Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four-fold. When compared with a single ZnO NR gas sensor, the sensitivity of a ZnO NC was found to increase four-fold. This increase in sensitivity is attributed to the increase in surface area of the ZnO NC. The formed single ZnO NC gas sensor has good stability, response and recovery time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.