Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an α-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses α-smooth muscle actin, β-actin, nonmuscle γ-actin, and smooth muscle γ-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during α-agonist contractions involves the remodeling of primarily γ-actin and, to a lesser extent, β-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.
Our group has previously shown that vasoconstrictors increase net actin polymerization in differentiated vascular smooth muscle cells (dVSMC) and that increased actin polymerization is linked to contractility of vascular tissue (Kim et al., Am J Physiol Cell Physiol 295: C768-778, 2008). However, the underlying mechanisms are largely unknown. Here, we evaluated the possible functions of the Ena/vasodilator-stimulated phosphoprotein (VASP) family of actin filament elongation factors in dVSMC. Inhibition of actin filament elongation by cytochalasin D decreases contractility without changing myosin light-chain phosphorylation levels, suggesting that actin filament elongation is necessary for dVSM contraction. VASP is the only Ena/VASP protein highly expressed in aorta tissues, and VASP knockdown decreased smooth muscle contractility. VASP partially colocalizes with alpha-actinin and vinculin in dVSMC. Profilin, known to associate with G actin and VASP, also colocalizes with alpha-actinin and vinculin, potentially identifying the dense bodies and the adhesion plaques as hot spots of actin polymerization. The EVH1 domain of Ena/VASP is known to target these proteins to their sites of action. Introduction of an expressed EVH1 domain as a dominant negative inhibits stimulus-induced increases in actin polymerization. VASP phosphorylation, known to inhibit actin polymerization, is decreased during phenylephrine stimulation in dVSMC. We also directly visualized, for the first time, rhodamine-labeled actin incorporation in dVSMC and identified hot spots of actin polymerization in the cell cortex that colocalize with VASP. These results indicate a role for VASP in actin filament assembly, specifically at the cell cortex, that modulates contractility in dVSMC.
Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.
Radiofrequency electromagnetic field (RF-EMF) is used globally in conjunction with mobile communications. There are public concerns of the perceived deleterious biological consequences of RF-EMF exposure. This study assessed neuronal effects of RF-EMF on the cerebral cortex of the mouse brain as a proxy for cranial exposure during mobile phone use. C57BL/6 mice were exposed to 835 MHz RF-EMF at a specific absorption rate (SAR) of 4.0 W/kg for 5 hours/day during 12 weeks. The aim was to examine activation of autophagy pathway in the cerebral cortex, a brain region that is located relatively externally. Induction of autophagy genes and production of proteins including LC3B-II and Beclin1 were increased and accumulation of autolysosome was observed in neuronal cell bodies. However, proapoptotic factor Bax was down-regulted in the cerebral cortex. Importantly, we found that RF-EMF exposure led to myelin sheath damage and mice displayed hyperactivity-like behaviour. The data suggest that autophagy may act as a protective pathway for the neuronal cell bodies in the cerebral cortex during radiofrequency exposure. The observations that neuronal cell bodies remained structurally stable but demyelination was induced in cortical neurons following prolonged RF-EMF suggests a potential cause of neurological or neurobehavioural disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.