Checkpoint blockade can reverse T-cell exhaustion and promote antitumor responses. Although blocking the PD-1 pathway has been successful in Hodgkin lymphoma, response rates have been modest in B-cell non-Hodgkin lymphoma (NHL). Coblockade of checkpoint receptors may therefore be necessary to optimize antitumor T-cell responses. Here, characterization of coinhibitory receptor expression in intratumoral T cells from different NHL types identified TIGIT and PD-1 as frequently expressed coinhibitory receptors. Tumors from NHL patients were enriched in CD8+ and CD4+ T effector memory cells that displayed high coexpression of TIGIT and PD-1, and coexpression of these checkpoint receptors identified T cells with reduced production of IFNγ, TNFα, and IL2. The suppressed cytokine production could be improved upon in vitro culture in the absence of ligands. Whereas PD-L1 was expressed by macrophages, the TIGIT ligands CD155 and CD112 were expressed by lymphoma cells in 39% and 50% of DLBCL cases and in some mantle cell lymphoma cases, as well as by endothelium and follicular dendritic cells in all NHLs investigated. Collectively, our results show that TIGIT and PD-1 mark dysfunctional T cells and suggest that TIGIT and PD-1 coblockade should be further explored to elicit potent antitumor responses in patients with NHL.
Effector T cells equipped with engineered antigen receptors specific for cancer targets have proven to be very efficient. Two methods have emerged: the Chimeric Antigen Receptors (CARs) and T-cell Receptor (TCR) redirection. Although very potent, CAR recognition is limited to membrane antigens which represent around 1% of the total proteins expressed, whereas TCRs have the advantage of targeting any peptide resulting from cellular protein degradation. However, TCRs depend on heavy signalling machinery only present in T cells which restricts the type of eligible therapeutic cells. Hence, an introduced therapeutic TCR will compete with the endogenous TCR for the signalling proteins and carries the potential risk of mixed dimer formation giving rise to a new TCR with unpredictable specificity. We have fused a soluble TCR construct to a CAR-signalling tail and named the final product TCR-CAR. We here show that, if expressed, the TCR-CAR conserved the specificity and the functionality of the original TCR. In addition, we demonstrate that TCR-CAR redirection was not restricted to T cells. Indeed, after transduction, the NK cell line NK-92 became TCR positive and reacted against pMHC target. This opens therapeutic avenues combing the killing efficiency of NK cells with the diversified target recognition of TCRs.
T cells modified to express chimeric antigen receptor (CAR) targeting CD19 (CD19CAR) have produced remarkable clinical responses in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. CD19CAR T-cell therapy has also demonstrated prominent effects in B-cell non-Hodgkin lymphoma (B-NHL) patients. However, a subset of patients who relapse after CD19CAR T-cell therapy have outgrowth of CD19− tumor cells. Hence, development of alternative CARs targeting other B-cell markers represents an unmet medical need for B-cell acute lymphoblastic leukemia and B-NHL. Here, we confirmed previous data by showing that, overall, B-NHL has high expression of CD37. A second-generation CD37CAR was designed, and its efficacy in T cells was compared with that of CD19CAR. In vitro assessment of cytotoxicity and T-cell function upon coculture of the CAR T cells with different target B-cell lymphoma cell lines demonstrated comparable efficacy between the 2 CARs. In an aggressive B-cell lymphoma xenograft model, CD37CAR T cells were as potent as CD19CAR T cells in controlling tumor growth. In a second xenograft model, using U2932 lymphoma cells containing a CD19− subpopulation, CD37CAR T cells efficiently controlled tumor growth and prolonged survival, whereas CD19CAR T cells had limited effect. We further show that, unlike CD19CAR, CD37CAR was not sensitive to antigen masking. Finally, CD37CAR reactivity was restricted to B-lineage cells. Collectively, our results demonstrated that CD37CAR T cells also can effectively eradicate B-cell lymphoma tumors when CD19 antigen expression is lost and support further clinical testing for patients with relapsed/refractory B-NHL.
Novel therapies to treat patients with solid cancers that have developed resistance to chemotherapy represent unmet needs of considerable dimensions. In the present review, we will address the attempts to develop chimeric antigen receptor (CAR) targeted immunotherapy against osteosarcoma (OS). This aggressive cancer displays its peak incidence in children and young adults. The main cause of patient death is lung metastases with a 5-year survival as low as 5%-10% in the primary metastatic setting and 30% in the relapse situation, respectively. Effective adjuvant combination chemotherapy introduced more than 40 years ago improved the survival rates from below 20% to around 60% in patients; however, since then, no major breakthroughs have been made. The use of immune checkpoint inhibitors has been disappointing in OS, while other types of immunotherapies such as CAR T cells remain largely unexplored. Indeed, for CAR T-cell therapy to be efficacious, two main criteria need to be fulfilled: (a) CAR T cells should target an epitope selectively expressed on the cell surface of OS in order to prevent toxicities in normal tissues and (b) the target should also be widely expressed on OS metastases. These challenges have already been undertaken in OS and illustrate the difficulties in developing tomorrow's CAR-T treatment in a solid tumour. We will discuss the experiences with CAR-T therapy development and efficacy to combat the clinical challenges in OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.