The biomechanics of slips are an important component in the prevention of fall-related injuries. The purpose of this paper is to review the available literature on the biomechanics of gait relevant to slips. This knowledge can be used to develop slip resistance testing methodologies and to determine critical differences in human behaviour between slips leading to recovery and those resulting in falls. Ground reaction forces at the shoe-floor interface have been extensively studied and are probably the most critical biomechanical factor in slips. The ratio of the shear to normal foot forces generated during gait, known as the required coefficient of friction (RCOF) during normal locomotion on dry surfaces or 'friction used/achievable' during slips, has been one biomechanical variable most closely associated with the measured frictional properties of the shoe/floor interface (usually the coefficient of friction or COF). Other biomechanical factors that also play an important role are the kinematics of the foot at heel contact and human responses to slipping perturbations, often evident in the moments generated at the lower extremity joints and postural adaptations. In addition, it must be realized that the biomechanics are dependent upon the capabilities of the postural control system, the mental set of the individual, and the perception of the environment, particularly, the danger of slipping. The focus of this paper is to review what is known regarding the kinematics and kinetics of walking on surfaces under a variety of environmental conditions. Finally, we discuss future biomechanical research needs to help to improve walkway-friction measurements and safety.
Diabetic subjects with peripheral neuropathy demonstrate alterations in some gait parameters during walking. These alterations could facilitate foot injuries, thus contributing to frequent foot ulceration.
Summary Reasons for performing study: The transmission of shockwaves following hoof impact is proposed to be one major source of stress to the limb. In the forelimb, there are indications that the period of horizontal deceleration of the hoof is related to the attenuation of shockwaves. In the hindlimb, information about the hoof deceleration has been lacking. Objective: To compare hoof deceleration patterns between the fore‐ and hindlimbs. Methods: Seven Standardbreds were trotted by hand over a force plate covered with sand, with triaxial accelerometers mounted on the fore and hind hooves. Variables representative of decelerations (first 2 main vertical deceleration peaks; characteristic minimum and maximum values in the craniocaudal deceleration; hoof braking time) and ground reaction forces (vertical loading rates; maximum and the following local minimum of the craniocaudal force) of the initial part of the stance phase, and the differences between individual fore‐ and hindlimb time and amplitude variables were used for statistical analyses. Results: Force plate data showed significantly greater vertical loading rate (mean ± s.d. 6.5 ± 5.9 N/sec) and horizontal loads (190.4 ± 110.2 N) in the forelimb than the hindlimb, but the parameters from accelerometer data showed no significant differences. Conclusions: No significant difference was found in the hoof deceleration, but the deceleration curves displayed a common pattern that described in detail the kinematics of the fore and hind hooves during the initial period of hoof braking. Potential relevance: These results contribute to further knowledge about the characteristics of these potential risk factors in the development of subchondral bone damage in the horse. Further studies are required on the influence of hoof braking pattern at higher speed, different shoeing and ground surfaces with different properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.