Herein, we report the preparation and application of a new nano-structured monolithic nanocolumn based on modified graphene oxide using narrow fused silica capillary column (e.g., 50 μm internal diameter). The nanocolumn was prepared by an in situ polymerization using butyl methacrylate, ethylene dimethacrylate, and methacryloyl graphene oxide nanoparticles. Dimethyl formamide and water were used as the porogenic solvent. After polymerization, the obtained nanocolumn was coated with dimethyloctadecylchlorosilane in order to enhance the hydrophobicity. Both isocratic and gradient nano-liquid chromatographic separations for small molecules (e.g., alkylbenzenes) and macromolecules (e.g., intact proteins) were performed. Theoretical plates number up to 3600 plates/m in isocratic mode for propylbenzene were achieved. It was demonstrated that the feasibility of graphene oxide modified monolithic nanocolumn for high-efficiency and high-throughput nanoscale proteomics analysis. The high resolving power of monolithic nanocolumn yielded sensitive protein separation with narrower peak width while a high-resolution analysis of peptides from trypsin-digested cytochrome C could be obtained. Graphene oxide based monolithic nanocolumns are promising and can allow to powerful tools for trace proteom sample analysis.
This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.