The oilseed rape plant's transition from the vegetative to the reproductive stage is important to its yield. This transition is controlled by a large group of flowering time genes that respond to environmental and endogenous cues. The role of jasmonates in flowering is almost unknown in Brassicaceae, even in the genus Arabidopsis. In this paper, the clear effect of exogenous methyl jasmonate (MeJA) on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in floral development is shown. In controlled greenhouse experiments, we found that the effect of MeJA depended on both plant genotype and jasmonate dosage. MeJA promoted maximum flowering when it was applied to the cultivars of early flowering types of oilseed rape, such as cultivars Mei-Jian and Fu-You 4. In addition, a concentration of 100 microM resulted in the most number of early open flowers, in comparison with the results obtained for concentrations of 50 and 80 microM. Furthermore, the application of high concentrations of MeJA (100 microM) also produced various kinds of abnormal flowers. Our results demonstrated that the combined actions of the floral identity genes, specifically BnAP1, BnAP2, BnAP3, BnAG1, and BnPI3, as reflected by their respective relative transcript levels, were responsible for causing the different kinds of flower abnormalities previously undescribed in oilseed rape. We expect our assay to be an enriching addition to the body of work that attempts to understand the signaling function of jasmonates in the floral inductive pathway.
Background Rapeseed (Brassica napus L.) is an important oil crop world-widely cultivated, and seed oil content (SOC) is one of the most important traits for rapeseed. To increase SOC, many efforts for promoting the function of genes on lipid biosynthesis pathway have been previously made. However, seed oil formation is a dynamic balance between lipid synthesis and breakdown. It is, therefore, also reasonable to weaken or eliminate the function of genes involved in lipid degradation for a higher final SOC. Results We applied a genome-wide association study (GWAS) on SOC in a collection of 290 core germplasm accessions. A total of 2,705,480 high-quality SNPs were used in the GWAS, and we identified BnaC07g30920D, a patatin-like lipase (PTL) gene, that was associated with SOC. In particular, six single-nucleotide-polymorphisms (SNPs) in the promoter region of BnaC07g30920D were associated with the significant reduction of SOC, leading to a 4.7–6.2% reduction of SOCs. We performed in silico analysis to show a total of 40 PTLs, which were divided into four clades, evenly distributed on the A and C subgenomes of Brassica napus. RNA-seq analysis unveiled that BnPTLs were preferentially expressed in reproductive tissues especially maturing seeds. Conclusions We identified BnaC07g30920D, a BnPTL gene, that was associated with SOC using GWAS and performed in silico analysis of 40 PTLs in Brassica napus. The results enrich our knowledge about the SOC formation in rapeseed and facilitate the future study in functional characterization of BnPTL genes.
Male sterility is widely used in the production of hybrid seeds in rice, but the use of genic male sterility is limited because of the high labour cost for maintaining male‐sterile lines. Previous studies using T‐DNA insertional mutagenesis demonstrated that disrupting the expression of oxophytodienoic acid reductase 3 (OPR3), which is involved in the jasmonate biosynthesis pathway, results in a kind of male sterility that can be restored to fertility by exogenous jasmonate in Arabidopsis. Here, we created male‐sterile mutations by editing the second and fourth exons of OsOPR7 in rice through clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated system 9. The induced mutagenesis at these exons resulted in 31.8% and 23.9% male‐sterile plants in the T0 generation, respectively. We screened male‐sterile lines that can be restored to fertility by exogenous methyl jasmonate in the T0, T1 and T2 rice populations and characterized the anther and agronomic traits of the transgenic plants. Results showed the successful generation of male‐sterile lines through the silencing of OsOPR7, the orthologous gene of Arabidopsis OPR3, in a field crop, paving the way for the establishment of a two‐line system for rice hybrid production. The system consists of a male‐sterile line that can be maintained by spraying methyl jasmonate and a restoring line that confers pollen.
The genomic era provides new perspectives in understanding polyploidy evolution, mostly on the genome-wide scale. In this paper, we show the sequence and expression divergence between the homologous ALCATRAZ (ALC) loci in Brassica napus, responsible for silique dehiscence. We cloned two homologous ALC loci, namely BnaC.ALC.a and BnaA.ALC.a in B. napus. Driven by the 35S promoter, both the loci complemented to the alc mutation of Arabidopsis thaliana, yet only the expression of BnaC.ALC.a was detectable in the siliques of B. napus. Sequence alignment indicated that BnaC.ALC.a and BolC.ALC.a, or BnaA.ALC.a and BraA.ALC.a, possess a high level of similarity. The understanding of the sequence and expression divergence among homologous loci of a gene is of due importance for an effective gene manipulation and TILLING (or ECOTILLING) analysis for the allelic DNA variation at a given locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.