EBV can infect smooth-muscle cells, at least in patients with AIDS, and it may contribute to the pathogenesis of leiomyomas and leiomyosarcomas in children with AIDS. EBV seems to play no part in smooth-muscle tumors in HIV-negative children.
Infectious mononucleosis caused by Epstein-Barr virus (EBV) usually resolves over a period of weeks or months without sequelae but may occasionally be complicated by a wide variety of neurologic, hematologic, hepatic, respiratory, and psychological complications. The strength of association of EBV with many of these complications remains based on scattered case reports, often using unsophisticated diagnostic tests, and the evidence for causation in many instances is unconvincing. There is little benefit of antiviral treatment of uncomplicated or complicated infectious mononucleosis. Corticosteroids may have a role in hastening resolution of some complications, especially upper airway obstruction and possibly immune-mediated anemia and thrombocytopenia, but should be used judiciously.
An Epstein-Barr viral gene (ZEBRA) is identified that, in human lymphoblastoid cells, activates a switch causing the virus to shift from the latent to the replicative phase of its life cycle. We have shown that a 2.7-kilobase-pair rearranged Epstein-Barr virus DNA fragment of this gene (BamHI fragment WZhet) induced transient expression of viral replicative antigens and polypeptides when it was transfected into a somatic cell hybrid, which was derived from the fusion of an epithelial line cell with a Burkitt lymphoma cell. We now show that this rearranged WZhet fragment, when introduced stably into lymphoblastoid cells, will activate expression of the complete viral replicative cycle in 1-10% of the lymphoblastoid cells, leading to production of biologically active virions that can immortalize primary lymphocytes. The transfected plasmid appears to be regulated in a manner analogous to the complete Epstein-Barr virus genome.
These experiments identify an Epstein-Barr virus-encoded gene product, called ZEBRA (BamHI fragment Z Epstein-Barr replication activator) protein, which activates a switch between the latent and replicative life cycle of the virus. Our previous work had shown that the 2.7-kilobase-pair WZhet piece of rearranged Epstein-Barr virus DNA from a defective virus activated replication when introduced into cells with a latent genome, but it was not clear whether a protein product was required for the phenomenon. We now use deletional, site-directed, and chimeric mutagenesis, together with gene transfer, to show that a 43-kilodalton protein, encoded in the BZLF1 open reading frame of het DNA, is responsible for this process. The rearrangement in defective DNA does not contribute to the structural gene for the protein. Similar proteins with variable electrophoretic mobility (37 to 39 kilodaltons) were encoded by BamHI Z fragments from standard, nondefective Epstein-Barr virus genomes. Plasmids expressing the ZEBRA proteins from B95-8 and HR-1 viruses were less efficient at activating replication in D98/HR-1 cells than those which contained the ZEBRA gene from the defective virus. It is not yet known whether these functional differences are due to variations in expression of the plasmids or to intrinsic differences in the activity of these polymorphic polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.