Background: Researchers have focused on isolating and identifying the bacteriocin producing lactic acid bacteria from various food systems especially dairy products. Molecular techniques have been recently used for rabid identification of bacteriocins rather than time-consuming biochemical characters. Global climate disturbances can affect the diversity of beneficial microorganisms in dairy and their products, especially lactic acid bacteria, so it is worth to evaluate their bacteriocinogenicity in different climates. Thus, the aim of this study was to screen for predominant bacteriocin producing lactic acid bacteria (LAB) in traditional dairy products of Luxor governorate at Upper Egypt and determine their bacteriocin-encoding genes. Results: Eighty-six strains of the LAB were isolated from raw milk and traditional dairy product of Luxor province, Egypt, in which 76.1% and 23.9% were identified as lactic acid bacilli and cocci, respectively. On the basis of their antibacterial potentials, 30 out of 68 LAB isolates were found to be antimicrobial producers. These isolates exhibited a potential antibacterial activity against Salmonella paratyphi B, Escherichia coli, Staphylococcus aureus, and Proteus mirabilis, except for Listeria monocytogenes. LAB isolates were analyzed using species-specific PCR; results emphasized that 22 of isolates were identified as Lactobacillus plantarum, while 8 were Leuconostoc mesenteroides. According to the sequencing of isolates, two strains named Lactobacillus plantarum Egypt 2018 (accession no. MH817034) and Leuconostoc mesenteroides Egypt 2018 (accession no. MH817035) were identified. Detection of bacteriocin-encoding genes was performed by polymerase chain reaction (PCR). The results emphasized that almost all tested Lb. plantarum strains (n = 10) possess both plnA and plnEF genes, whereas the gene encoding mesentericin Y105 was detected in one Lc. mesenteroides of the examined isolates. Conclusions: This study was effective for the rapid detection of bacteriocin producing strains within dairy products. Extracted bacteriocin could be a valuable source of natural food biopreservative.
Background The biosynthesis of silver nanoparticles (AgNPs) is an area of interest for researchers due to its eco-friendly approach. The use of biological approaches provides a clean and promising alternative process for the synthesis of AgNPs. We used for the first time the supernatant of Leclercia adecarboxylata THHM under optimal conditions to produce AgNPs with an acceptable antimicrobial activity against important clinical pathogens. Results In this study, soil bacteria from different locations were isolated and screened for their potential to form AgNPs. The selected isolate, which was found to have the ability to biosynthesize AgNPs, was identified by molecular methods as Leclercia adecarboxylata THHM and its 16S rRNA gene was deposited in GenBank under the accession number OK605882. Different conditions were screened for the maximum production of AgNPs by the selected bacteria. Five independent variables were investigated through optimizations using one variable at a time (OVAT) and the Plackett–Burman experimental design (PBD). The overall optimal parameters for enhancing the biosynthesis of AgNPs using the supernatant of Leclercia adecarboxylata THHM as a novel organism were at an incubation time of 72.0 h, a concentration of 1.5 mM silver nitrate, a temperature of 40.0 °C, a pH of 7.0, and a supernatant concentration of 30% (v/v) under illumination conditions. The biosynthesized AgNPs have been characterized by UV–visible spectroscopy (UV–Vis), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The biosynthesized AgNPs showed an absorption peak at 423 nm, spherical shape, and an average particle size of 17.43 nm. FTIR shows the bands at 3321.50, 2160.15, and 1636.33 cm−1 corresponding to the binding vibrations of amine, alkyne nitrile, and primary amine bands, respectively. The biosynthesized AgNPs showed antimicrobial activity against a variety of microbial pathogens of medical importance. Using resazurin-based microtiter dilution, the minimum inhibitory concentration (MIC) values for AgNPs were 500 µg/mL for all microbial pathogens except for Klebsiella pneumoniae ATCC13883, which has a higher MIC value of 1000 µg/mL. Conclusions The obtained data revealed the successful green production of AgNPs using the supernatant of Leclercia adecarboxylata THHM that can be effectively used as an antimicrobial agent against most human pathogenic microbes.
Background Bacteriocins are proteinaceous compounds produced from lactic acid bacteria. Bacteriocins are well-known for their antibacterial potential and safety for application in food. However, the commercial availability of bacteriocin is facing several limitations; among them is the low yield and short stability period. That calls for a new strategy for overcoming these hurdles. Among these approaches is incorporating bacteriocin in nanoparticles. So, the aim of this study was to enhance the plantaricin produced from isolated Lactobacillus plantarum strain using nanotechnology. Results In this study, the plnEF genes encoding plantaricin EF have been identified and sequenced (accession number of MN172264.1). The extracted bacteriocin (EX-PL) was obtained by the ammonium sulfate method. Then, it was used for biosynthesizing plantaricin-incorporated silver nanoparticles (PL-SNPs). The synthesized nanoparticles were confirmed by SEM-EDAX analysis. The antibacterial activity of both combined (PL-SNPs) and extracted plantaricin (EX-PL) were tested against some strains of foodborne pathogenic bacteria. The results revealed that the antibacterial activities were increased by 99.2% on the combination of bacteriocin with the silver nanoparticle. The MIC of EX-PL (7.6 mg/mL) has been lowered after incorporating into silver nanoparticles and reached 0.004 mg/mL for PL-SNPs. Despite that extracted plantaricin showed no inhibitory activity towards Listeria monocytogenes, plantaricin-incorporated silver nanoparticles displayed inhibitory activity against this strain. Furthermore, the stability period at 4 °C was increased from 5 days to 60 days for EX-PL and PL-SNPs, respectively. Conclusions Plantaricin-incorporated silver nanoparticles possess higher antibacterial activity and more stability than the free one, which makes it more fitting for combating foodborne pathogens and open more fields for applications in both food and pharmaceutical industries. Graphical abstract
Ethanol extract of Physalis peruviana and water extract of Hyphaene thebaica were tested for their inhibitory effects on eight bacterial strains (Escherichia coli, Proteus mirabilis, Salmonella typhimurium, Salmonella entrica , Shigella dysenteriae , Bacillus cereus, Bacillus licheniformis and Staphylococcus aureus) by using well diffusion technique. The study demonstrated that Staph. aureus was the most sensitive gram-positive strain and E. coli was the most sensitive gram-negative strain to ethanol extract of Physalis peruvianae and water extract of Hyphaene thebaica. The inhibition zone diameters near to the synthetic antibiotic (ciprofloxacin). The antioxidant activity of the both extracts was also investigated by using 2, 2-diphenyl, 1-picrylhydrazyl (DPPH) scavenging activity and ascorbic acid as control. The results showed that the scavenging effects of both extracts on DPPH radicals increased by increasing the concentration. The ethanolic extract of Physalis peruvianae and water extract of Hyphaene thebaica were a promising source of natural antimicrobial agent, antioxidant agent and as natural preservative of processed food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.