Staphylococcus haemolyticus ( S. haemolyticus ) is one of the Coagulase-negative staphylococci (CoNS) that inhabits the skin as a commensal. It is increasingly implicated in opportunistic infections, including diabetic foot ulcer (DFU) infections. In contrast to the abundance of information available for S. aureus and S. epidermidis , little is known about the pathogenicity of S. haemolyticus , despite the increased prevalence of this pathogen in hospitalized patients. We described, for the first time, the pathogenesis of different clinical isolates of S. haemolyticus isolated from DFU on primary human skin fibroblast (PHSF) cells. Virulence-related genes were investigated, adhesion and invasion assays were carried out using Giemsa stain, transmission electron microscopy (TEM), MTT and flowcytometry assays. Our results showed that most S. haemolyticus carried different sets of virulence-related genes. S. haemolyticus adhered to the PHSF cells to variable degrees. TEM showed that the bacteria were engulfed in a zipper-like mechanism into a vacuole inside the cell. Bacterial internalization was confirmed using flowcytometry and achieved high intracellular levels. PHSF cells infected with S.haemolyticus suffered from amarked decrease in viability and increased apoptosis when treated with whole bacterial suspensions or cell-free supernatants but not with heat-treated cells. After co-culture with PBMCs, S. haemolyticus induced high levels of pro-inflammatory cytokines. This study highlights the significant development of S. haemolyticus , which was previously considered a contaminant when detected in cultures of clinical samples. Their high ability to adhere, invade and kill the PHSF cells illustrate the severe damage associated with DFU infections. Abbreviations CoNS, coagulase-negative staphylococci; DFU, diabetic foot ulcer; DM, diabetes mellitus; DMEM, Dulbecco’s Modified Eagle Medium; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; PBMCs,peripheral blood mononuclear cells; PHSF, primary human skin fibroblast; CFU, colony-forming unit.
Staphylococcus haemolyticus (S. haemolyticus) constitutes the main part of the human skin microbiota. It is widespread in hospitals and among medical staff, resulting in being an emerging microbe causing nosocomial infections. S. haemolyticus, especially strains that cause nosocomial infections, are more resistant to antibiotics than other coagulase-negative Staphylococci. There is clear evidence that the resistance genes can be acquired by other Staphylococcus species through S. haemolyticus. Severe infections are recorded with S. haemolyticus such as meningitis, endocarditis, prosthetic joint infections, bacteremia, septicemia, peritonitis, and otitis, especially in immunocompromised patients. In addition, S. haemolyticus species were detected in dogs, breed kennels, and food animals. The main feature of pathogenic S. haemolyticus isolates is the formation of a biofilm which is involved in catheter-associated infections and other nosocomial infections. Besides the biofilm formation, S. haemolyticus secretes other factors for bacterial adherence and invasion such as enterotoxins, hemolysins, and fibronectin-binding proteins. In this review, we give updates on the clinical infections associated with S. haemolyticus, highlighting the antibiotic resistance patterns of these isolates, and the virulence factors associated with the disease development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.