Connecting multiple and heterogeneous hardware devices to solve problems raises some challenges, especially in terms of interoperability and communications management. A distributed solution may offer many advantages, like easy use of dispersed resources in a network and potential increase in processing power and data transfer speed. However, integrating devices from different architectures might not be an easy task. This work deals with the synchronization of heterogeneous and distributed hardware devices. For this purpose, a loosely coupled computing platform named Virtual Bus is presented as main contribution of this work. In order to provide interoperability with legacy systems, the IEEE 1516 standard (denoted HLA -High Level Architecture) is used. As proof of concept, Virtual Bus was used to integrate three different computing architectures, a multi-core CPU, a GPU and a board with an Altera FPGA and an ARM processor, which execute a remote image processing application that requires a communication between the devices. All components are managed by Virtual Bus. This proposal simplify the coding efforts to integrate heterogeneous distributed devices and results demonstrated the successful data exchanging and synchronization among all devices, proving its feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.