This study compared the reliability of motor maps over 3 sessions from both neuronavigated transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) data between younger and older adults. Seven younger (ages 19-31) and seven older (ages 64-76) adults participated in three joint TMS/fMRI assessment sessions separated by 7 or 14 days. Sessions involved mapping of the right first dorsal interosseous muscle using single-pulse TMS immediately followed by block-design fMRI scanning involving volitional right-hand index finger to thumb oppositional squeeze. Intersession reliability of map volume, evaluated by intraclass correlation and Jaccard Coefficient between testing sessions, was more consistent for younger adults in both fMRI and TMS. A positive correlation was evidenced between fMRI and TMS map volumes and Jaccard Coefficients indicating spatial consistency across sessions between the two measures. Comparisons of map reliability between age groups showed that younger adults have more stable motor maps in both fMRI and TMS. fMRI and TMS maps show consistency across modalities. Future interpretation of motor maps should attempt to account for potential increased variability of such mapping in older age groups. Despite these age group differences in reliability, fMRI and TMS appear to offer consistent and complementary information about cortical representation of the first dorsal interosseous muscle.
BackgroundTakayasu arteritis (TA) is an idiopathic large-vessel vasculitis that can result in significant morbidity and mortality secondary to progressive stenosis and occlusion. Monitoring disease progression is crucial to preventing relapse, but is often complicated by the lack of clinical symptoms in the setting of active disease. Although acute phase reactants such as ESR and CRP are generally used as an indicator of inflammation and disease activity, mounting evidence suggests that these markers cannot reliably distinguish active from inactive TA.Case presentationWe report a 24-year-old Hispanic female with a 5-year history of TA who presented with stroke-like symptoms and evidence of left MCA occlusion on imaging, despite a history of decreasing inflammatory markers. CTA revealed complete occlusion of the left common carotid artery, left subclavian, and left MCA from their origins. It also revealed a striking compensatory circulation supplying the left anterior circulation as well as the left subclavian as a response to progressive stenosis.ConclusionMonitoring ESR and CRP levels alone may not be a reliable method to evaluate disease progression in patients with TA, and should be taken in context with both patient’s clinical picture and the imaging. We recommend that serial imaging be performed regularly in the setting of active disease to monitor progression and allow for immediate therapy in response to evidence of disease advancement, with a relaxation of the imaging interval once the disease is presumed inactive.
The current study examined the effect of age on both glutamatergic and GABAergic signaling in the rodent medial prefrontal cortex (mPFC), with an emphasis on revealing novel changes contributing to increased inhibition in age. Whole-cell patch clamp recordings were obtained from layer 2/3 mPFC pyramidal neurons in acute cortical slices prepared from either young (4 month) or aged (20–24 month) male F344 rats. Results indicated that GABAB receptors on GABAergic, but not on glutamatergic, inputs to layer 2/3 pyramidal cells are tonically activated by ambient GABA in young animals, and further demonstrated that this form of tonic inhibition is significantly attenuated in aged mPFC. Moreover, concurrent with loss of tonic presynaptic GABAB autoreceptor activation, layer 2/3 pyramidal cells in aged mPFC are subjected to increased tonic activation of extrasynaptic GABAA and GABAB receptors. These data demonstrate a shift in the site of GABABR mediated inhibitory tone in the aged mPFC that clearly promotes increased inhibition of pyramidal cells in aged animals, and that may plausibly contribute to impaired executive function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.