In a recent study (Goltz, J.S., Wolkoff, A.W., Novikoff, P.M., Stockert, R.J., and Satir, P. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 7026-7030), we found that ligand- and receptor-containing endocytic vesicles bind to endogenous microtubules in vitro after 60 min of receptor-mediated endocytosis of asialo-orosomucoid. In the presence of ATP, ligand-containing endocytic vesicles are released from microtubules, while those containing receptor are not. We hypothesized that cytoplasmic dynein may associate with ligand-containing, but not receptor-containing, domains of endocytic vesicles and might be involved in the movement of ligand-containing vesicles along microtubules during sorting of ligand from receptor. Direct evidence in support of this hypothesis has been obtained in the present study. Binding of ligand-containing vesicles to microtubules correlates highly (p < 0.001) with binding of dynein, but not kinesin, under a variety of conditions. Binding of receptor-containing vesicles to microtubules is independent of both cytoplasmic dynein and kinesin binding. Tight association of cytoplasmic dynein with a population of ligand-containing vesicles is seen directly by immunoprecipitation. These results support the view that in receptor-mediated endocytosis, ligand-containing vesicles become bound to microtubules by cytoplasmic dynein. While receptor domains of endosomes remain attached to microtubules in an ATP-independent manner, ligand-containing domains might be moved away toward pericentrosomal lysosomes by this motor molecule.
Osteogenesis and angiogenesis are inter-linked and tightly regulated processes involved in growth, repair, and bone remodeling. Bone morphogenic protein 2 (BMP-2). vascular endothelial growth factor (VEGF), pleiotrophin (PTN) and thrombin-related peptide, TP508 have all been found to have the ability to promote bone fracture healing by enhancing both the osteogenesis and angiogenesis processes. One of the underlying mechanisms proposed is that mediators for osteogenesis may also be involved in mediating angiogenesis and vice versa. The aim of this study was to examine the chemotactic effects of rhBMP-2, rhVEGF165, rhPTN and TP508 on human osteoblasts and endothelial cells. Using a direct-viewing chemotdxis assay system, we report for the first time, the direct quantitative observation of chemotaxis of both human osteoblastc cells and microvascular endothelial cells towards sources of rhBMP-2, rhVEGF165, rhPTN and TP508. This study confirmed that rhBMP-2, rhVEGF165r rhPTN and TP508 have chemotactic effects on both human osteoblastic and endothelial cells, indicating that these factors are directly involved in promoting angiogenesis and osteogenesis by recruiting osteoblasts and endothelial cells via chemotaxis.
Previous studies have shown that a single injection of thrombin peptide (TP508) accelerates fracture repair in a closed rat femoral fracture model. The present study was conducted to elucidate the molecular mechanisms of TP508 action using Affymetrix genomescale profiling and to link early gene expression changes to fracture histology and bone strength changes. Treatment of femoral fractures with TP508 accelerated fracture repair as determined by destructive torsion testing. Blinded histological analysis demonstrated that TP508-treated fracture callus had a significant increase in blood vessels relative to the controls. Gene array analysis showed that TP508 significantly induced expression of early growth factors, inflammatory response modifiers, and angiogenesis-related genes. This study therefore suggests that TP508 promotes fracture repair through a mechanism that involves an increased induction of a number of growth factors, enhanced expression of inflammatory mediators, and angiogenesis-related genes.
The thrombin-related peptide, TP508, has been shown to promote soft tissue healing and fracture repair. One possible clinical application of TP508 is to accelerate bone regeneration during distraction osteogenesis, which is a lengthy procedure involving significant complications. In this study, we tested the ability of TP508 to accelerate the consolidation phase of distraction osteogenesis in a rabbit model of leg lengthening. Twenty-three rabbits had left tibiae lengthened for 1 cm over a period of 6 days. T P 508 (0, 30 and 300 pg in 300 pI saline) was injected into the distraction gaps at the beginning and the end of the lengthening phase, and all the animals were killed 2 weeks after lengthening. By the end of experiment, more animals in the TP508 treated groups had complete bony union of the distraction gaps when compared to the saline treated group. pQCT examination of the regenerates demonstrated a significantly greater bone mineral density (BMD) in the TP508 treated groups relative to the saline control group, but no statistical difference in the BMD was found between the two dosages of TP508. Bone consolidation and bone remodeling was far advanced in the TP508 300 pg treated group, and the regenerates mainly consisted of well-vascularized woven bone. In contrast, in the group that received the 30 pg TP508 treatment, focal bone defects and discontinuities of the new cortices were evident in some but not all animals. In the saline control group a majority of the animals showed large amounts of fibrous and cartilaginous tissues in the regenerates, and none of the regenerates had completed consolidation. This study has demonstrated that local application of TP508 enhanced bone formation and consolidation during distraction osteogenesis in the rabbit. The findings indicate that TP508 may be useful in promoting osteogenesis in situations when augmentative treatment for bone formation and consolidation are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.