MRL/Mpj mice are the only known strain of mouse that can regenerate cardiac lesions and completely heal ear punches without scarring. This study was undertaken to determine if MRL mice also have greater regrowth capabilities in amputated digit tips. Right paw digit tips of neonatal MRL mice were dissected, with the left front paws as uncut controls. Controls used for regrowth comparison were the DBA/2 and C57BL/6 inbred mouse strains. Consecutive x-ray images were captured of front paws at 0, 7, 14, 21, and 28 days postamputation. MRL mouse digit tips were found to distally regrow more quickly and reform nails partially and completely to a greater degree in comparison with DBA and B6 mice (p<0.05). We next undertook microarray expression analysis to identify the genes involved in digit tip regrowth. Four hundred genes out of 15,000 were significantly differentially expressed (p<0.05) in MRL, DBA, and B6 mice at day 4 in comparison with day 0 control tissue. Multiple differences between MRL, DBA, and B6 strains were found in genes that are implicated in the WNT signaling pathway and transcription. We conclude that MRL mice regrow digits distally more rapidly and partially and completely regrow nails to a greater degree than B6 and DBA strains. This enhanced regrowth is likely due to strain-specific increased expression of genes involved in growth and development.
Using a mouse mutant that fractures spontaneously and dies at a very young age, we identified that a deletion of the GULO gene, which is involved in the synthesis of vitamin C, is the cause of impaired osteoblast differentiation, reduced bone formation, and development of spontaneous fractures.Introduction: A major public health problem worldwide, osteoporosis is a disease characterized by inadequate bone mass necessary for mechanical support, resulting in bone fracture. To identify the genetic basis for osteoporotic fractures, we used a mouse model that develops spontaneous fractures (sfx) at a very early age. Materials and Methods: Skeletal phenotype of the sfx phenotype was evaluated by DXA using PIXImus instrumentation and by dynamic histomorphometry. The sfx gene was identified using various molecular genetic approaches, including fine mapping and sequencing of candidate genes, whole genome microarray, and PCR amplification of candidate genes using cDNA and genomic DNA as templates. Gene expression of selected candidate genes was performed using real-time PCR analysis. Osteoblast differentiation was measured by bone marrow stromal cell nodule assay. Results: Femur and tibial BMD were reduced by 27% and 36%, respectively, in sfx mice at 5 weeks of age. Histomorphometric analyses of bones from sfx mice revealed that bone formation rate is reduced by >90% and is caused by impairment of differentiated functions of osteoblasts. The sfx gene was fine mapped to a 2 MB region containing ∼30 genes in chromosome 14. By using various molecular genetic approaches, we identified that deletion of the gulonolactone oxidase (GULO) gene, which is involved in the synthesis of ascorbic acid, is responsible for the sfx phenotype. We established that ascorbic acid deficiency caused by deletion of the GULO gene (38,146-bp region) contributes to fractures and premature death because the sfx phenotype can be corrected in vivo by treating sfx mice with ascorbic acid and because osteoblasts derived from sfx mice are only able to form mineralized nodules when treated with ascorbic acid. Treatment of bone marrow stromal cells derived from sfx/sfx mice in vitro with ascorbic acid increased expression levels of type I collagen, alkaline phosphatase, and osteocalcin several-fold.
Conclusion:The sfx is a mutation of the GULO gene, which leads to ascorbic acid deficiency, impaired osteoblast cell function, and fractures in affected mice. Based on these and other findings, we propose that ascorbic acid is essential for the maintenance of differentiated functions of osteoblasts and other cell types.
These results suggest that the region near D10S677, adjacent to the human homolog of the Rf1 gene, contributes to ESRD susceptibility in African Americans. They confirm that the region on 10p, near D10S1435, appears to be involved in early onset, non-diabetic etiologies of ESRD in African Americans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.